Skip to main content

Advertisement

Log in

The Influence of Adipose-Derived Stem Cells Induced into Endothelial Cells on Ectopic Vasculogenesis and Osteogenesis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Established vascular network has a crucial importance in bone regeneration. Adipose-derived stem cells (ADSCs) can be differentiated in vitro towards endothelial cells (ECs) that give a possibility for their application in bone tissue engineering (BTE). The aim of our study was to examine the influence of ADSCs in vitro induced into ECs on vascularization and osteogenic process in subcutaneous implants. Induced ADSCs were implanted subcutaneously into BALB/c mice, in combination with the bone mineral matrix carrier (BC) and platelet-rich plasma (PRP), parallel with the implants without the cells. The combination of BC, PRP and ADSCs induced into ECs increased vascularization in subcutaneous implants that was shown through endothelial-related gene expression, high percentage of vascularization and VEGFR-2 immunoexpression. Osteocalcin immunoexpression, relative expression of osteopontin gene, and histological analysis showed that osteogenic process was more pronounced when the carrier was loaded with ADSCs induced into ECs which was associated with strong vascularization in cellularized implants. In implants without the cells vasculogenesis was initially stimulated, but vascular network was unsustainable at later observation points. Therefore, the approach that includes ADSCs in vitro induced into ECs combined with BC and PRP can be a good strategy for improving vascularization in bone regeneration and BTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

BTE:

Bone tissue engineering

ADSCs:

Adipose-derived stem cells

ECs:

Endothelial cells

BC:

Bone mineral matrix carrier

PRP:

Platelet-rich plasma

SVF:

Stromal vascular fraction

DMEM:

Dulbecco’s Modified Eagles Minimal Essential Medium

P03:

Third passage

ECP:

The implants consisted of ADSCs in vitro induced into ECs, BC and PRP

CP:

The implants consisted of BC and PRP

OC:

Osteocalcin

References

  1. Aghaloo, T. L., P. K. Moy, and E. G. Freymiller. Evaluation of platelet rich plasma in combination with freeze-dried bone in the rabbit cranium. A pilot study. Clin. Oral Implants Res. 16:250–257, 2005.

    Article  Google Scholar 

  2. Aitsebaomo, J., A. L. Portbury, J. C. Schisler, and C. Patterson. Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ. Res. 103:929–939, 2008.

    Article  Google Scholar 

  3. Ajduković, Z., S. Najman, Lj. Đorđević et al. Repair of bone tissue affected by osteoporosis with hydroxyapatite-poly-l-lactide (HAp-PLLA) with and without blood plasma. J. Biomater. Appl. 20:179–190, 2005.

  4. Anderson, S. M., S. N. Siegman, and T. Segura. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 32:7432–7443, 2011.

    Article  Google Scholar 

  5. Arinzeh, T. L. S. J. Peter, M. P. Archambault et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg (Am.) 85:1927–1935, 2003.

  6. Azuma, N., S. A. Duzgun, M. Ikeda, et al. Endothelial cell response to different mechanical forces. J. Vasc. Surg. 32:789, 2000.

    Article  Google Scholar 

  7. Cai, X., X. Su, G. Li, et al. Osteogenesis of adipose-derived stem cells, osteogenesis, edited by Y. Lin (Ed.), 2012 http://www.intechopen.com/books/osteogenesis/osteogenesis-of-adipose-derived-stem-cells.

  8. Conrad, C., and R. Huss. Adult stem cell lines in regenerative medicine and reconstructive surgery. J. Surg. Res. 124(2):201–208, 2005.

    Article  Google Scholar 

  9. Cornejo, A., D. E. Sahar, S. M. Stephenson, et al. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng. Part A 18:15–16, 2012.

    Article  Google Scholar 

  10. Druecke, D., S. Langer, E. Lamme, et al. Neovascularization of poly(ether ester) blockcopolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 68A:10–18, 2004.

    Article  Google Scholar 

  11. Elices, M. J., L. Osborn, Y. Takada, et al. VCAM- I on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584, 1990.

    Article  Google Scholar 

  12. Eppley, B. L., W. S. Pietrzak, M. Blanton, et al. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast. Reconstr. Surg. 118:147e–159e, 2006.

    Article  Google Scholar 

  13. Fernandez Pujol B., F. C. Lucibello, U. M. Gehling, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65:287–300, 2000.

  14. Fong, G. H., J. Rossant, M. Gertsenstein, and M. L. Breitman. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70, 1995.

    Article  Google Scholar 

  15. Fraser, J. K., I. Wulur, Z. Alfonso, and M. H. Hedrick. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24:150–154, 2006.

    Article  Google Scholar 

  16. Freshney, R. I. Culture of Animal Cells—A Manual of Basic Technique (5th ed.). New York: Wiley, pp. 192–195, 2005.

    Book  Google Scholar 

  17. Gashler, A., and V. P. Sukhatme. Early growth response protein 1 (Egr-1): prototype of a zinc finger family of transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 50:191–224, 1995.

    Article  Google Scholar 

  18. Gluhak-Heinrich, J., A. Villarreal, and D. Pavlin. Reciprocal regulation of osteopontin gene during mechanically induced bone formation and resorption. J. Bone Miner. Res. 15:S1, S478, 2000.

  19. Gürsoy, G., Y. Acar, and S. Alagöz. Osteopontin: A multifunctional molecule. J. Med. Med. Sci. 1:055–060, 2010.

    Google Scholar 

  20. Hoeben, A., B. Landuyt, and M. S. Highley. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56:549–580, 2004.

    Article  Google Scholar 

  21. Intini, G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials 30:4956–4966, 2009.

    Article  Google Scholar 

  22. Intini, G., S. Andreana, F. E. Intini, et al. Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration. J. Transl. Med. 5:13, 2007.

    Article  Google Scholar 

  23. Jurgens, W. J., R. J. Kroeze, R. A. Bank, et al. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J. Orthop. Res. 29:853–860, 2011.

    Article  Google Scholar 

  24. Kanczler, J. M., and R. O. Oreffo. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell. Mater. 215:100–114, 2008.

    Google Scholar 

  25. Karamysheva, A. F. Mechanisms of angiogenesis. Biochemistry (Moscow) 73:751–762, 2008.

    Article  Google Scholar 

  26. Kim, E. S., E. J. Park, and P. H. Choung. Platelet concentration and its effect on bone formation in calvarial defects: an experimental study in rabbits. J. Prosthet. Dent. 86:428–433, 2001.

    Article  Google Scholar 

  27. Kim, S., and H. Von Recum. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng. B 14:133–147, 2008.

    Article  Google Scholar 

  28. Ko, H. C., B. K. Milthorpe, and C. D. McFarland. Engineering thick tissues—the vascularisation problem. Eur. Cells Mater. 14:1–18, 2007.

    Google Scholar 

  29. Konno, M., T. S. Hamazaki, S. Fukuda, et al. Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochem. Biophys. Res. Commun. 400:461–465, 2010.

    Article  Google Scholar 

  30. Korenaga, R., J. Ando, K. Kosaki, et al. Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am. J. Physiol. 273:C1506–C1515, 1997.

    Google Scholar 

  31. Lee, A. J., S. Hodges, and R. Eastell. Measurement of osteocalcin. Ann. Clin. Biochem. 37:432–446, 2000.

    Article  Google Scholar 

  32. Lin, C. S., Z. C. Xin, C. H. Deng, et al. Defining adipose tissue-derived stem cells in tissue and in culture. Histol. Histopathol. 25:807–815, 2010.

    Google Scholar 

  33. Lysiak-Drwal, K., M. Dominiak, L. Solski, et al. Early histological evaluation of bone defect healing with and without guided bone regeneration techniques: experimental animal studies. Postepy Hig Med Dosw (Online) 62:282–288, 2008.

    Google Scholar 

  34. Madonna, R., and R. De Caterina. In vitro neovasculogenic potential of resident adipose tissue precursors. Am. J. Physiol. Cell Physiol. 295:C1271–C1280, 2008.

    Article  Google Scholar 

  35. Man, Y., P. Wang, Y. Guo, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials 33:8802–8811, 2012.

    Article  Google Scholar 

  36. Marx, R. E., E. R. Carlson, R. M. Eichstaedt, et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85:638–646, 1998.

    Article  Google Scholar 

  37. Mizuno, H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and literature review. J. Nippon Med. Sch. 76:56–66, 2009.

    Article  Google Scholar 

  38. Murphy, M. B., D. Blashki, R. M. Buchana, et al. Multi-composite bioactive osteogenic sponges featuring mesenchymal stem cells, platelet-rich plasma, nanoporous silicon enclosures, and peptide amphiphiles for rapid bone regeneration. J. Funct. Biomater. 2:39–66, 2011.

    Article  Google Scholar 

  39. Najman, S., Lj. Đorđević, V. Savić, et al. Changes of HAp/PLLA biocomposites and tissue reaction after subcutaneous implantation. Facta Univ. Ser. Med. Biol. 10:131–134, 2003.

  40. Nurden, A. T., P. Nurden, M. Sanchez, et al. Platelets and wound healing. Front Biosci. 13:3525–3548, 2008.

    Article  Google Scholar 

  41. Ochoa, E. R., and J. P. Vacanti. An overview of the pathology and approaches to tissue engineering. Ann. N.Y. Acad. Sci. 979:10–26, 2002.

    Article  Google Scholar 

  42. Pak, J., J. J. Chang, J. H. Lee, and S. H. Lee. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet. Disord. 14:337, 2013.

    Article  Google Scholar 

  43. Partap, S., F. Lyons, and F. J. O’Brien. Scaffolds & Surfaces. Stud. Health Technol. Inform. 152:187–201, 2010.

    Google Scholar 

  44. Patel, Z. S., S. Young, Y. Tabata, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931, 2008.

    Article  Google Scholar 

  45. Piattelli, M., G. A. Favero, A. Scarano, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants 14:835–840, 1999.

    Google Scholar 

  46. Planat-Benard, V., J. S. Silvestre, B. Cousin, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656, 2004.

    Article  Google Scholar 

  47. Quarto, R., M. Mastrogiacomo, R. Cancedda, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344:385–386, 2001.

    Article  Google Scholar 

  48. Sandor, G. K., and R. Suuronen. Combining adipose-derived stem cells, resorbable scaffolds and growth factors: an overview of tissue engineering. J. Can. Dent. Assoc. 74:167–170, 2008.

    Google Scholar 

  49. Santos, M. I., and R. L. Reis. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10:12–27, 2010.

    Article  Google Scholar 

  50. Scherberich, A., A. M. Müller, D. J. Schäfer, et al. Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J. Cell. Physiol. 225:348–353, 2010.

    Article  Google Scholar 

  51. Shapiro, F. Bone development and its relation to fracture repair, The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell. Mater. 15:53–76, 2008.

    Google Scholar 

  52. Shayesteh, Y. S., A. Khorsand, P. Motahhary, et al. Evaluation of platelet-rich plasma in combination with deproteinized bovine bone mineral in the rabbit cranium; pilot study. J. Dent. 2:127–134, 2005.

    Google Scholar 

  53. Soker, S., M. Machado, and A. Atala. Systems for therapeutic angiogenesis in tissue engineering. World J. Urol. 18:10–18, 2000.

    Article  Google Scholar 

  54. Starke, R. D., F. Ferraro, K. E. Paschalaki, et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 117:1071–1080, 2011.

    Article  Google Scholar 

  55. Sun, H., Z. Qu, Y. Guo, et al. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed. Eng. Online 6:41, 2007.

    Article  Google Scholar 

  56. Sun, G., Y. I. Shen, S. Kusuma, et al. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32:95–106, 2011.

    Article  Google Scholar 

  57. Sung, J. H., H. M. Yang, J. B. Park, et al. Isolation and characterization of mouse mesenchymal stem cells. Transpl. Proc. 40:2649–2654, 2008.

    Article  Google Scholar 

  58. Traktuev, D. O., E. V. Parfenova, V. A. Tkachuk, K. L. March, et al. Adipose stromal cells-plastic type of cells with high therapeutic potential. Tsitologiia 48:83–94, 2006.

    Google Scholar 

  59. Traktuev, D. O., D. N. Prater, S. Merfeld-Clauss, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ. Res. 104:1410–1420, 2009.

    Article  Google Scholar 

  60. Tremblay, P. L., V. Hudon, F. Berthod, et al. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transpl. 5:1002–1010, 2005.

    Article  Google Scholar 

  61. Unger, R. E., A. Sartoris, K. Peters, et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28:3965, 2007.

    Article  Google Scholar 

  62. Von Offenberg Sweeney, N., P. M. Cummins, E. J. Cotter, et al. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem. Biophys. Res. Commun. 329:573–582, 2005.

    Article  Google Scholar 

  63. Wang, D. S., M. Miura, H. Demura, and K. Sato. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology 138:2953–2962, 1997.

    Google Scholar 

  64. Xie, X., Y. Wang, C. Zhao, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 33:7008–7018, 2012.

    Article  Google Scholar 

  65. Yang, P., X. Huang, J. Shen, et al. Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold. BMC Musculoskelet. Disord. 14:318, 2013.

    Article  Google Scholar 

  66. Yang, Y. Q., T. Ying-Ying, and W. Ricky. The role of vascular endothelial growth factor in ossification. Int. J. Oral Sci. 4:64–68, 2012.

    Article  Google Scholar 

  67. You, T. M., B. H. Choi, J. Li, et al. The effect of platelet-rich plasma on bone healing around implants placed in bone defects treated with Bio-Oss: a pilot study in the dog tibia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 103:e8–e12, 2007.

    Article  Google Scholar 

  68. Young, S., J. D. Kretlow, C. Nguyen, et al. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications. Tissue Eng. Part B Rev. 14:295–306, 2008.

    Article  Google Scholar 

  69. Yu, H., P. J. VandeVord, L. Mao, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30:508–517, 2009.

    Article  Google Scholar 

  70. Zhang, N., Y. P. Wu, S. J. Qian et al. Research progress in the mechanism of effect of PRP in bone deficiency healing. Sci. World J. 1–7. ID 134582, 2013.

  71. Živkovic, J. M., S. J. Najman, M. Đ. Vukelić et al. Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch. Biol. Sci. 67(1):173–186, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project Grant III41017, Ministry of Education, Science and Technological Development, Republic of Serbia. The authors would like to thank Tanja Prokić, a technician from Faculty of Medicine, University of Niš, for helping with animal procedures and tissue processing.

Conflict of Interest

Jelena G Najdanović, Vladimir J Cvetković, Sanja Stojanović, Marija Đ Vukelić-Nikolić, Milica N Stanisavljević, Jelena M Živković and Stevo J Najman declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. All animal procedures were approved by the Local Ethical Committee (approval number 01-2857-8) and conducted in accordance with the Animal Welfare Act (Republic of Serbia). The animals were treated conforming to the regulation of the “European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS no. 123 Appendix A)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena G. Najdanović.

Additional information

Associate Editor Alyssa Panitch oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najdanović, J.G., Cvetković, V.J., Stojanović, S. et al. The Influence of Adipose-Derived Stem Cells Induced into Endothelial Cells on Ectopic Vasculogenesis and Osteogenesis. Cel. Mol. Bioeng. 8, 577–590 (2015). https://doi.org/10.1007/s12195-015-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0403-x

Keywords

Navigation