Skip to main content
Log in

Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber \({f}_{{\text{Q}}}\) and beam quality correction factors \({k}_{{\text{Q}}}\) were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. \({f}_{{\text{Q}}}\) was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the \({f}_{{\text{Q}}}\) calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The \({f}_{{\text{Q}}}\) calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the \({k}_{{\text{Q}}}\) were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the \({f}_{{\text{Q}}}\) and \({k}_{{\text{Q}}}\) with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data from this study are available from the corresponding author upon reasonable request.

References

  1. Sempau J, Andreo P, Aldana J, Mazurier J, Salvat F. Electron beam quality correction factors for plane-parallel ionization chambers: Monte Carlo calculations using the PENELOPE system. Phys Med Biol. 2004;49(18):4427–44. https://doi.org/10.1088/0031-9155/49/18/016.

    Article  PubMed  Google Scholar 

  2. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical reports series. 2000. International Atomic Energy Agency, p. 398. https://www-pub.iaea.org/mtcd/publications/pdf/trs398_scr.pdf.

  3. Gomà C, Andreo P, Sempau J. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers. Phys Med Biol. 2016;61(6):2389–406. https://doi.org/10.1088/0031-9155/61/6/2389.

    Article  CAS  PubMed  Google Scholar 

  4. Gomà C, Sterpin E. Monte Carlo calculation of beam quality correction factors in proton beams using PENH. Phys Med Biol. 2019;64(18): 185009. https://doi.org/10.1088/1361-6560/ab3b94.

    Article  CAS  PubMed  Google Scholar 

  5. Wulff J, Baumann KS, Verbeek N, Bäumer C, Timmermann B, Zink K. Topas/Geant4 configuration for ionization chamber calculations in proton beams. Phys Med Biol. 2018;63(11): 115013. https://doi.org/10.1088/1361-6560/aac30e.

    Article  CAS  PubMed  Google Scholar 

  6. Baumann KS, Kaupa S, Bach C, Engenhart-Cabillic R, Zink K. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4. Phys Med Biol. 2020;65(5): 055015. https://doi.org/10.1088/1361-6560/ab6e53.

    Article  CAS  PubMed  Google Scholar 

  7. Kretschmer J, Dulkys A, Brodbek L, Stelljes TS, Looe HK, Poppe B. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams. Med Phys. 2020;47(11):5890–905. https://doi.org/10.1002/mp.14499.

    Article  PubMed  Google Scholar 

  8. Baumann KS, Derksen L, Witt M, Michael Burg J, Engenhart-Cabillic R, Zink K. Monte Carlo calculation of beam quality correction factors in proton beams using Fluka. Phys Med Biol. 2021;66(17):17NT01. https://doi.org/10.1088/1361-6560/ac1c4b.

    Article  CAS  Google Scholar 

  9. Salvat F. A generic algorithm for Monte Carlo simulation of proton transport. Nucl Instrum Methods Phys Res B. 2013;316:144–59. https://doi.org/10.1016/j.nimb.2013.08.035.

    Article  ADS  CAS  Google Scholar 

  10. Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman G, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira VD, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser KL, Grichine VM, Guatelli S, Guèye P, Gumplinger P, Howard AS, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko VN, Jones FW, Jun SY, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee SB, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia MG, Pokorski W, Quesada JM, Raine M, Reis MA, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin JI, Strakovsky II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran HN, Truscott PR, Urban L, Uzhinsky V, Verbeke JM, Verderi M, Wendt BL, Wenzel H, Wright DH, Wright DM, Yamashita T, Yarba J, Yoshida H. Recent developments in GEANT4. Nucl Instrum Methods Phys Res A. 2016;835:186–225. https://doi.org/10.1016/j.nima.2016.06.125.

    Article  ADS  CAS  Google Scholar 

  11. Battistoni G, Boehlen T, Cerutti F, Chin PW, Esposito LS, Fassò A, Ferrari A, Lechner A, Empl A, Mairani A, Mereghetti A, Ortega PG, Ranft J, Roesler S, Sala PR, Vlachoudis V, Smirnov G. Overview of the Fluka code. Ann Nucl Energy. 2015;82:10–8. https://doi.org/10.1016/J.ANUCENE.2014.11.007.

    Article  CAS  Google Scholar 

  12. Andreo P, Burns DT, Kapsch RP, McEwen M, Vatnitsky S, Andersen CE, Ballester F, Borbinha J, Delaunay F, Francescon P, Hanlon MD, Mirzakhanian L, Muir B, Ojala J, Oliver CP, Pimpinella M, Pinto M, de Prez LA, Seuntjens J, Sommier L, Teles P, Tikkanen J, Vijande J, Zink K. Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398. Phys Med Biol. 2020;65(9): 095011. https://doi.org/10.1088/1361-6560/ab807b.

    Article  CAS  PubMed  Google Scholar 

  13. Palmans H, Lourenço A, Medin J, Vatnitsky S, Andreo P. Current best estimates of beam quality correction factors for reference dosimetry of clinical proton beams. Phys Med Biol. 2022;67(19): 195012. https://doi.org/10.1088/1361-6560/ac9172.

    Article  Google Scholar 

  14. Fano U. Note on the Bragg–Gray cavity principle for measuring energy dissipation. Radiat Res. 1954;1(3):237–40. https://doi.org/10.2307/3570368.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27(3):485–98. https://doi.org/10.1118/1.598917.

    Article  CAS  PubMed  Google Scholar 

  16. Poon E, Seuntjens J, Verhaegen F. Consistency test of the electron transport algorithm in the GEANT4 Monte Carlo code. Phys Med Biol. 2005;50(4):681–94. https://doi.org/10.1088/0031-9155/50/4/008.

    Article  CAS  PubMed  Google Scholar 

  17. Sempau J, Andreo P. Configuration of the electron transport algorithm of PENELOPE to simulate ion chambers. Phys Med Biol. 2006;51(14):3533–48. https://doi.org/10.1088/0031-9155/51/14/017.

    Article  CAS  PubMed  Google Scholar 

  18. Sterpin E, Sorriaux J, Souris K, Vynckier S, Bouchard H. A Fano cavity test for Monte Carlo proton transport algorithms. Med Phys. 2014;41(1): 011706. https://doi.org/10.1118/1.4835475.

    Article  PubMed  Google Scholar 

  19. Lourenço A, Bouchard H, Galer S, Royle G, Palmans H. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: Fluka simulations supported by a Fano test. Med Phys. 2019;46(2):885–91. https://doi.org/10.1002/mp.13281.

    Article  CAS  PubMed  Google Scholar 

  20. Khan AU, Simiele EA, Dewerd LA. Monte Carlo-derived ionization chamber correction factors in therapeutic carbon ion beams. Phys Med Biol. 2021;66(19): 195003. https://doi.org/10.1088/1361-6560/ac226c.

    Article  CAS  Google Scholar 

  21. Mcmanus M, Romano F, Royle G, Palmans H, Subiel A. A Geant4 Fano test for novel very high energy electron beams. Phys Med Biol. 2021;66(24): 245023. https://doi.org/10.1088/1361-6560/ac3e0f.

    Article  Google Scholar 

  22. Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe SI, Kai T, Tsai PE, Matsuda N, Iwase H, Shigyo N. Features of particle and heavy ion transport code system (PHITS). version 3.02. J Nucl Sci Technol. 2018;55(6):684–90. https://doi.org/10.1080/00223131.2017.1419890.

    Article  CAS  Google Scholar 

  23. Iwamoto Y, Hashimoto S, Sato T, Matsuda N, Kunieda S, Çelik Y, Furutachi N, Niita K. Benchmark study of particle and heavy-ion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments. J Nucl Sci Technol. 2022;59(5):665–75. https://doi.org/10.1080/00223131.2021.1993372.

    Article  CAS  Google Scholar 

  24. Takada K, Sato T, Kumada H, Koketsu J, Takei H, Sakurai H, Sakae T. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. J Radiat Res. 2018;59(1):91–9. https://doi.org/10.1093/JRR/RRX057.

    Article  CAS  PubMed  Google Scholar 

  25. Sato T, Furuta T, Liu Y, Naka S, Nagamori S, Kanai Y, Watabe T. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Phys. 2021;8(1):4. https://doi.org/10.1186/s40658-020-00350-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. GuembouShouop CJ, Mbida Mbembe S, TayouKamkumo C, Beyala Ateba JF, Ndontchueng Moyo M, NguelemMekongtso EJ, Simo A, Strivay D. Monte Carlo optimum management of 241Am/Be disused sealed radioactive sources. Sci Rep. 2022;12(1):1183. https://doi.org/10.1038/s41598-022-05221-y.

    Article  ADS  CAS  Google Scholar 

  27. Boukhellout A, Ounoughi N, Kharfi F. Monte–Carlo simulation using phits of secondary neutrons produced in-patient during 16O ion therapy. Radiat Prot Dosimetry. 2022;198(1–2):31–6. https://doi.org/10.1093/rpd/ncab188.

    Article  CAS  PubMed  Google Scholar 

  28. Sechopoulos I, Rogers DWO, Bazalova-Carter M, Bolch WE, Heath EC, McNitt-Gray MF, Sempau J, Williamson JF. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: report of the AAPM research committee task group 268. Med Phys. 2018;45(1):e1–5. https://doi.org/10.1002/mp.12702.

    Article  PubMed  Google Scholar 

  29. Berger MJ, Coursey JS, Zucker M, Chang AJ. ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. Version 2.0.1. Gaithersburg: National Institute of Standards and Technology; 1999. https://doi.org/10.18434/T4NC7P.

  30. Seltzer SM, Fernández-Verea JM, Andreo P, Bergstrom PM, Burns DT, Krajcar Bronić I, Ross CK, Salvat F. Key data for ionizing- radiation dosimetry: Measurement standards and applications. ICRU Report 90. 2016.

  31. ATIMA homepage. https://web-docs.gsi.de/~weick/atima/.

  32. Palmans H, Medin J, Trnková P, Vatnitsky S. Gradient corrections for reference dosimetry using Farmer-type ionization chambers in single-layer scanned proton fields. Med Phys. 2020;47(12):6531–9. https://doi.org/10.1002/mp.14554.

    Article  CAS  PubMed  Google Scholar 

  33. Boudared A, Cugnon J, David J-C, Mancusi D. New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87(1): 014606. https://doi.org/10.1103/PhysRevC.87.014606.

    Article  ADS  CAS  Google Scholar 

  34. Spencer LV, Attix FH. A theory of cavity ionization. Radiat Res. 1955;3(3):239–54. https://doi.org/10.2307/3570326.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Baumann KS, Horst F, Zink K, Gomà C. Comparison of PENH, FLUKA, and Geant4/TOPAS for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams. Med Phys. 2019;46(10):4639–53. https://doi.org/10.1002/mp.13737.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI (grant number: JP22K15888).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Yasui.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Ethical approval

This article does not contain any studies involving human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was reported in The 125th Scientific Meeting of Japan Society of Medical Physics.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagake, Y., Yasui, K., Ooe, H. et al. Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS. Radiol Phys Technol 17, 280–287 (2024). https://doi.org/10.1007/s12194-024-00777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-024-00777-y

Keywords

Navigation