Skip to main content

Particles Simulation Through Matter in Medical Physics Using the Geant4 Toolkit: From Conventional to Laser-Driven Hadrontherapy

  • Conference paper
  • First Online:
Laser-Driven Sources of High Energy Particles and Radiation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 231))

  • 768 Accesses

Abstract

Monte Carlo simulation represents nowadays one of the powerful approach for the simulation of very complex environments like those typical of medical physics where, in general, an accurate simulation of the involved radiation beams and of the patients are required to fully reproduce a clinical case. It since from 1963, when Berger introduced the condensed approach for the simulation of electron interaction with matter grew being today one of the most important tools used to verify the dose distribution in patients, design radiotherapy facility, study the radioisotopesproton/ion beams and their application (Berger. Monte Carlo calculation of the penetration and diffusion of fast charged particles, vol. I. Academic Press, New York, pp. 135–215, 1963 [1]),(Berger and Hubbell. XCOM: photon cross sections on a personal computer, Technical Report NBSIR 87–3597. National Institute of Standards and Technology, Gaithersburg, MD, 1987. [2]). Monte Carlo is also often used to evaluate important parameters related with the quality of a radiation treatment [3]. Evaluation of radiobiological damage from charged particles represents a complex calculation where a simple analytical approach is not sufficient for a precise and complete description of involved phenomena. In this work we will present, after a brief introduction on Monte Carlo method, the use of the open-source Geant4 toolkit for the simulation of a typical hadrontherapy passive beamline and how it can be efficiently used to retrieve critical parameters like LET and RBE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles, in Methods in Computational Physics, vol. I (Academic Press, New York, 1963), pp. 135–215

    Google Scholar 

  2. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections on a personal computer, Technical Report NBSIR 87–3597 (National Institute of Standards and Technology, Gaithersburg, MD, 1987)

    Google Scholar 

  3. J. Seco, F. Verhaegen, Monte Carlo Techniques in Radiation Therapy. Series: Imaging in Medical Diagnosis and Therapy, 16 November 2016

    Google Scholar 

  4. N. Metropolis, The Beginning of the Monte Carlo Method (Los Alamos Science, 1987) (Special Issue), pp. 125–130

    Google Scholar 

  5. N. Metropolis, S. Ulam, Monte Carlo method. Am. Stat. Assoc. 44, 335341 (1949)

    Article  Google Scholar 

  6. H.A. Meyer (ed.), Symposium on Monte Carlo Methods (Wiley, New York, 1981)

    Google Scholar 

  7. G.C. de Buffon, Essai darithmtique morale, vol. 4. Supplment lHistoire Naturelle (1777)

    Google Scholar 

  8. G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roestler, A. Fasso, J. Ran, e FLUKA code: description and benchmarking, in Proceedings of Hadronic Simulation Workshop, Fermilab, vol. 68, September 2006

    Google Scholar 

  9. J. Briesmeister, MCNPA general purpose Monte Carlo code for neutron and photon transport, Version 3A. Los Alamos National Laboratory Report LA-7396-M (Los Alamos, NM, 1986)

    Google Scholar 

  10. M.J. Berger, ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for Electrons, Protons, and Helium Ions, Technical Report NBSIR 4999 (National Institute of Standards and Technology, Gaithersburg, MD, 1993)

    Google Scholar 

  11. J. Wulff, TOPAS/GEANT4 configuration for ionization chamber calculations in proton beams. Phys. Med. Biol. 106989 (2018)

    Google Scholar 

  12. A.Y. Chen, Y.W.H. Liu, R.J. Sheu, Radiation shielding evaluation of the BNCT treatment room at THOR: A TORT-coupled MCNP Monte Carlo simulation study. Appl. Radiat. Isot. 66, 28–38 (2008)

    Article  Google Scholar 

  13. B. Jones, S. Krishnan, S. Cho, Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations B. Med. Phys. 37, 3809–3816 (2010)

    Article  Google Scholar 

  14. S. Jan et al., GATE—GEANT4 application for tomographic emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)

    Article  Google Scholar 

  15. J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods A 835, 186–225 (2016)

    Article  ADS  Google Scholar 

  16. S. Agostinelli et al., GEANT4A simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  17. R. Brun, M. Hansroul, J.C. Lassalle, GEANT users guide. CERN Report DD/EE/82 (1982)

    Google Scholar 

  18. J. Allison et al., An application of the GEANT3 geometry package to the description of the opal detector. Comput. Phys. Commun. 47, 55–74 (1987). CERN-EP/87-80

    Article  ADS  Google Scholar 

  19. Official Geant4 website, http://geant4.web.cern.ch

  20. S. Okada et al., GPU acceleration of Monte Carlo simulation at the cellular and DNA levels. Smart Innov. Syst. Technol. 45, 323–332 (2015)

    Article  Google Scholar 

  21. G. Amadio et al., The GeantV project: preparing the future of simulation, in Journal of Physics: Conference Series 2015, vol. 664 (2015), p. 072006

    Google Scholar 

  22. A. Kimura et al., DICOM interface and visualization tool for Geant4-based dose calculation, in IEEE Nuclear Science Symposium Conference Record, vol. 2 (2005), pp. 981–984

    Google Scholar 

  23. N.A. Graf, mesh2gdml: from CAD to Geant 4, in IEEE Nuclear Science Symposium and Medical Imaging Conference Record (2012), pp. 1011–1015

    Google Scholar 

  24. B. Caccia et al., MedLinac2: a GEANT4 based software package for radiotherapy. Annali dell’Istituto Superiore di Sanita 46(2), 173–177 (2010)

    Google Scholar 

  25. S. Elles et al., Geant4 and Fano cavity test: where are we? in Journal of Physics: Conference Series, vol. 102, No. 1 (2008), p. 012009

    Google Scholar 

  26. S. Incerti, The Geant4-DNA project. Int. J. Model. Simul. Sci. Comput. 1, 157–178 (2010)

    Article  Google Scholar 

  27. M.A. Bernal et al., Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 31, 861–874 (2015)

    Article  Google Scholar 

  28. S. Guatelli et al., Review of Geant4-DNA applications for micro and nanoscale simulations. Phys. Medica 32(10), 1187–1200 (2016)

    Article  Google Scholar 

  29. G.A.P. Cirrone, G. Cuttone et al., Implementation of a new Monte Carlo GEANT4 simulation tool for the development of a proton therapy beam line and verification of the related dose distributions. IEEE Trans. Nucl. Sci. 52, 1756–1758 (2005)

    Article  ADS  Google Scholar 

  30. G.A.P. Cirrone, G. Cuttone et al., Hadrontherapy: A 4-based tool for proton/ion-therapy studies. Prog. Nucl. Sci. Technol. 2, 207–212 (2011)

    Article  Google Scholar 

  31. G.A.P. Cirrone et al., Clinical and research activities at the CATANA facility of INFN-LNS: from the conventional hadrontherapy to the laser-driven approach. Front. Oncol. (2017). https://doi.org/10.3389/fonc.2017.00223

  32. G. Petringa et al., Development and analysis of the track-LET, dose-LET and RBE calculations with a therapeutical proton and ion beams using Geant4 Monte Carlo toolkit. Phys. Med. 42(1), 9 (2017)

    Article  Google Scholar 

  33. F. Tommasino et al., Proton beam characterization in the experimental room of the Trento Proton Therapy facility. Nucl. Instrum. Methods Phys. Res. A 869, 1520 (2017)

    Article  Google Scholar 

  34. I. Kyriakou et al., Improvements in Geant4 energy-loss model and effect on low-energy electron transport in liquid water. Med. Phys. 42, 3870–3876 (2015)

    Article  Google Scholar 

  35. H. Wright, M.H. Kelsey, The Geant4 Bertini cascade. Nucl. Instrum. Methods A 804, 175–188 (2015)

    Article  ADS  Google Scholar 

  36. L. Pandola, Validation of the Geant4 simulation of bremsstrahlung from think targets below 3 MeV. Nucl. Instrum. Methods B 350, 41–48 (2015)

    Article  ADS  Google Scholar 

  37. J. Apostolakis et al., Progress in hadronic physics modelling in Geant4, in Journal of Physics: Conference Series, vol. 160 (2009), p. 012073

    Google Scholar 

  38. N. Givehchi et al., Online monitor detector for the protontherapy beam at the INFN Laboratori Nazionali del Sud-Catania. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 572(3), 1094–1101 (2006)

    Article  ADS  Google Scholar 

  39. E. Grussel et al., A general solution to charged particle beam flattening using an optimized dual scattering foil technique with application to proton therapy beams. Phys. Med. Biol. 50(5), 7 (2005), pp. 755–767

    Google Scholar 

  40. Y. Takada, Dual-ring double scattering method for proton beam spreading. J. Appl. Phys. 33(59) (1994), p. 353

    Article  ADS  Google Scholar 

  41. H. Paganetti, Proton Therapy Physics, Series in Medical Physics and Biomedical Engineering (2012)

    Google Scholar 

  42. S. Bijian Jia et al., Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 806, 101–108 (2015)

    Article  ADS  Google Scholar 

  43. A.M. Kellerer, D. Chmelevsky, Criteria for the applicability of LET. Radiat. Res. 63, 226–234 (1975)

    Article  ADS  Google Scholar 

  44. A.M. Kellerer, Fundamentals of microdosimetry, in Dosimetry of Ionizing Radiation, ed. by K.R. Kase, B.E. Bjarngard, F.H. Attix, vol. 1 (Academic Press, Orlando, 1985), pp. 77–162

    Chapter  Google Scholar 

  45. F. Guan et al., Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the Geant4 Monte Carlo code. Med. Phys. 42(11) (2015)

    Google Scholar 

  46. M.A. Cortes-Giraldo et al., A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams. Phys. Med. Biol. 60, 264569 (2015)

    Article  Google Scholar 

  47. F. Romano et al., A Monte Carlo study for the calculation of the averaged linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Phys. Med. Biol. 59, 2863–2882 (2014)

    Article  Google Scholar 

  48. IAEA TRS 461 Relative Biological Effectiveness in Ion Beam Therapy, International Atomic Energy Agency, 2008

    Google Scholar 

  49. R.B. Hawkins, A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int. J. Radiat. Biol. 69(6), 739–755 (2017)

    Article  Google Scholar 

  50. M. Scholz, Track structure and the calculation of biological effects of heavy charged particles. Adv. Space Res. 18, 5–14 (1996)

    Article  ADS  Google Scholar 

  51. M. Scholz et al., Computation of cell survival in heavy ion beams for therapy, the model and its approximation. Radiat. Environ. Biophys. 36, 59–66 (1997)

    Article  Google Scholar 

  52. A.L. McNamara et al., A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys. Med. Biol. 60(21), 8399–8416 (2015)

    Article  Google Scholar 

  53. T. Elsasser et al., Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 71, 866–872 (2008)

    Article  Google Scholar 

  54. P. Chaudhary et al., Relative biological effectiveness variation along monoenergetic and modulated bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int. J. Radiat. Oncol. Biol. Phys. 90(1), 27–35 (2014)

    Article  MathSciNet  Google Scholar 

  55. A. Mairani et al., The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys. Med. Biol. 55, 4273–4289 (2010)

    Article  ADS  Google Scholar 

  56. S.V. Bulanov et al., Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28(5), 453–456 (2002)

    Article  ADS  Google Scholar 

  57. S.V. Bulanov, J.J. Wilkens et al., Laser ion acceleration for hadron therapy. Rev. Top. Probl. 57(12), 1149–1179 (2014)

    Google Scholar 

  58. S.P. Hatchett, C.G. Brown et al., Electron, photon and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076–2082 (2000)

    Article  ADS  Google Scholar 

  59. S.C. Wilks, A.B. Langdon et al., Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542–549 (2001)

    Article  ADS  Google Scholar 

  60. A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, M. Passoni, Advanced strategies for ion acceleration using high-power lasers. Plasma Phys. Control. Fusion 55, 124020 (2013)

    Article  ADS  Google Scholar 

  61. F. Wagner, O. Deppert, C. Brabetz, P. Fiala et al., Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH\(_2\) targets. Phys. Rev. Lett. 116(20), 205002 (2016)

    Article  ADS  Google Scholar 

  62. G.A.P. Cirrone, F. Romano et al., Design and status of the ELIMED beam line for laser-driven ion beams. Appl. Sci. (2015)

    Google Scholar 

  63. F. Schillaci, G.A.P. Cirrone et al., Design of the ELIMAIA ion collection system. J. Instrum. (2014)

    Google Scholar 

  64. F. Romano, A. Attili et al., Monte Carlo simulation for the ELIMED transport beamline, in AIP Conference Proceedings, vol. 1546 (2013)

    Google Scholar 

  65. S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  66. D.W.O. Rogers, Fifty years of Monte Carlo simulations for medical physics. Phys. Med. Biol. 51(13) (2006)

    Article  ADS  Google Scholar 

  67. R.R. Wilson, Monte Carlo study of shower production. Phys. Rev. 86, 261–269 (1952)

    Article  ADS  Google Scholar 

  68. J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pandola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cirrone, G.A.P., Cuttone, G., Pandola, L., Margarone, D., Petringa, G. (2019). Particles Simulation Through Matter in Medical Physics Using the Geant4 Toolkit: From Conventional to Laser-Driven Hadrontherapy. In: Gizzi, L., Assmann, R., Koester, P., Giulietti, A. (eds) Laser-Driven Sources of High Energy Particles and Radiation. Springer Proceedings in Physics, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-25850-4_9

Download citation

Publish with us

Policies and ethics