Skip to main content
Log in

Verification of phantom accuracy using a Monte Carlo simulation: bone scintigraphy chest phantom

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

We aimed to compare the measurement and simulation data of bone scintigraphy of a chest phantom using a Monte Carlo simulation to verify the accuracy of the simulated data. The SIM2 bone phantom was enclosed using 300 kBq/mL of technetium-99 m (99mTc) to represent the bone tumor and 50 kBq/mL of 99mTc to represent normal bone. Projection data were obtained using single-photon emission computed tomography (SPECT). Simulated projection data were constructed based on CT data. The contrast ratio, recovery coefficient (RC), % coefficient variation (CV), and power spectrum density (PSD) of each part were calculated from the reconstructed data. The contrast ratio and RC were equal between the actual and simulated data. Higher % CV values were noted for soft tissue than for normal bone. The PSD was equal for all frequency band ranges. Our results prove the utility of the Monte Carlo simulation for verifying various data using phantoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys. 1999;26:574–608. https://doi.org/10.1118/1.598559.

    Article  CAS  PubMed  Google Scholar 

  2. Buvat I, Castiglioni I. Monte Carlo simulations in SPECT and PET. Q J Nucl Med. 2002;46:48–61.

    CAS  PubMed  Google Scholar 

  3. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med. 1995;36:1489–513.

    CAS  PubMed  Google Scholar 

  4. LaCroix KJ, Tsui BM, Hasegawa BH. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images. J Nucl Med. 1998;39:562–74.

    CAS  PubMed  Google Scholar 

  5. Maeda H, Yamaki N, Azuma M. Development of the software package of the nuclear medicine data processor for education and research. Jpn J Radiol Technol. 2012;68:299–306. https://doi.org/10.6009/jjrt.2012_jsrt_68.3.299.

    Article  Google Scholar 

  6. Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53:270–8. https://doi.org/10.1109/TNS.2006.869826.

    Article  Google Scholar 

  7. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61. https://doi.org/10.1088/0031-9155/49/19/007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol. 1996;41:2481–96. https://doi.org/10.1088/0031-9155/41/11/017.

    Article  CAS  PubMed  Google Scholar 

  9. Buvat I, Castiglioni I, Feuardent J, Gilardi MC. Unified description and validation of Monte Carlo simulators in PET. Phys Med Biol. 2005;50:329–46. https://doi.org/10.1088/0031-9155/50/2/011.

    Article  PubMed  Google Scholar 

  10. Bouzekraoui Y, Bentayeb F, Asmi H, Bonutti F. Energy window and contrast optimization for single-photon emission computed tomography bremsstrahlung imaging with yttrium-90. Indian J Nucl Med. 2019;34:125–8. https://doi.org/10.4103/ijnm.IJNM_150_18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peterson M, Gustafsson J, Ljungberg M. Monte Carlo-based quantitative pinhole SPECT reconstruction using a ray-tracing back-projector. Monte Carlo-based quantitative pinhole SPECT reconstruction using a ray-tracing back-projector. EJNMMI Phys. 2017;4:32. https://doi.org/10.1186/s40658-017-0198-z.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Knoll P, Rahmim A, Gültekin S, Šámal M, Ljungberg M, Mirzaei S, et al. Improved scatter correction with factor analysis for planar and SPECT imaging. Rev Sci Instrum. 2017;88: 094303. https://doi.org/10.1063/1.5001024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khoshakhlagh M, Islamian JP, Abedi M, Mahmoudian B, Mardanshahi AR. A study on determination of an optimized detector for single photon emission computed tomography. World J Nucl Med. 2016;15:12–7. https://doi.org/10.4103/1450-1147.167588.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Azarm A, Islamian JP, Mahmoudian B, Gharepapagh E. The effect of parallel-hole collimator material on image and functional parameters in SPECT imaging: a SIMIND Monte Carlo Study. World J Nucl Med. 2015;14:160–4. https://doi.org/10.4103/1450-1147.163242.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kosuda S, Kaji T, Yokoyama H, Yokokawa T, Katayama M, Iriye T, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med. 1996;37:975–8.

    CAS  PubMed  Google Scholar 

  16. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Türler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67. https://doi.org/10.1007/s00259-013-2532-6.

    Article  CAS  PubMed  Google Scholar 

  17. Delpassand ES, Garcia JR, Bhadkamkar V, Podoloff DA. Value of SPECT imaging of the thoracolumbar spine in cancer patients. Clin Nucl Med. 1995;20:1047–51. https://doi.org/10.1097/00003072-199512000-00001.

    Article  CAS  PubMed  Google Scholar 

  18. Ichikawa H, Miwa K, Matsutomo N, Watanabe Y, Kato T, Shimada H. Development of a novel body phantom with bone equivalent density for evaluation of bone SPECT. Jpn J Radiol Technol. 2015;71:1235–40. https://doi.org/10.6009/jjrt.2015_JSRT_71.12.1235.

    Article  CAS  Google Scholar 

  19. Ichikawa H, Kato T, Shimada H, Watanabe Y, Miwa K, Matsutomo N, et al. Detectability of thoracie bone scintigraphy evaluated using a novel custom-designed phantom. Jpn J Nucl Med Technol. 2017;37:229–38.

    Google Scholar 

  20. Inoue K, Sato T, Kitamura H, Hirayama A, Fukushi M, Kurosawa H, et al. Examination of PET image evaluation experimentation method aiming at improved accuracy of data acquisition. Jpn J Radiol Technol. 2006;62:1449–55. https://doi.org/10.6009/jjrt.62.1449.

    Article  Google Scholar 

  21. Kaneta T, Ogawa M, Daisaki H, Nawata S, Yoshida K, Inoue T. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate. Am J Nucl Med Mol Imaging Res. 2016;6:262–8.

    CAS  Google Scholar 

  22. Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 2013;3:45. https://doi.org/10.1186/2191-219X-3-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito T, Onoguchi M, Ogata Y, Matsusaka Y, Shibutani T. Evaluation of edge-preserving and noise-reducing effects using the nonlinear diffusion method in bone single-photon emission computed tomography. Nucl Med Commun. 2019;40:693–702. https://doi.org/10.1097/MNM.0000000000001028.

    Article  PubMed  Google Scholar 

  24. Oonishi H, Takahashi M, Matsuo S, Ushio T, Noma K, Masuda K. Evaluation of a spect image using a textual analysis. Jpn J Radiol Technol. 1995;51:710–6.

    Article  Google Scholar 

  25. Yang C, Liu F, Ahunbay E, Chang YW, Lawton C, Schultz C, et al. Combined online and offline adaptive radiation therapy: a dosimetric feasibility study. Pract Radiat Oncol. 2014;4:e75-83. https://doi.org/10.1016/j.prro.2013.02.012.

    Article  PubMed  Google Scholar 

  26. Qin A, Sun Y, Liang J, Yan D. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015;91:1026–33. https://doi.org/10.1016/j.ijrobp.2014.12.043.

    Article  PubMed  Google Scholar 

  27. Bahreyni Toossi MT, Islamian JP, Momennezhad M, Ljungberg M, Naseri SH. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys. 2010;35:42–7. https://doi.org/10.4103/0971-6203.55967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirakawa S, Ushiroda T, Hashimoto H, Tadokoro M, Uno M, Tsujimoto M, et al. Construction of the quantitative analysis environment using Monte Carlo simulation. Jpn J Nucl Med Technol. 2013;33:367–76.

    Google Scholar 

  29. Jan S, Santin G, Strul D, Staelens S, Assi´e K, Autret D, et al. Gate: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Akihiro Kikuchi (Hokkaido University Science, Hokkaido, Japan), Seiji Shirakawa (Fujita Health University, Aichi, Japan), Hiroyuki Tsushima (Ibaraki Prefectural University, Ibaraki, Japan), Hiroki Nosaka (Nippon Medical School, Tokyo, Japan), Norikazu Matsutomo (Kyorin University, Tokyo, Japan), and Noriyasu Yamaki (Nihon Medi-Physics Co Ltd, Tokyo, Japan) for providing technical support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimune Ito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies performed on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Tsuchikame, H., Ichikawa, H. et al. Verification of phantom accuracy using a Monte Carlo simulation: bone scintigraphy chest phantom. Radiol Phys Technol 14, 336–344 (2021). https://doi.org/10.1007/s12194-021-00631-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-021-00631-5

Keywords

Navigation