Skip to main content

Advertisement

Log in

Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

211At is a promising nuclide for targeted radioisotope therapy. Direct imaging of this nuclide is important for in vivo evaluation of its distribution. We investigated suitable conditions for single-photon emission computed tomography (SPECT) imaging of 211At and assessed their feasibility using a homemade Monte Carlo simulation code, MCEP-SPECT. Radioactivity concentrations of 5, 10, or 20 kBq/mL were distributed in six spheres in a National Electrical Manufactures Association (NEMA) body phantom with a background of 1 kBq/mL. The energy window, projection number, and acquisition time were 71–88 keV, 60, and 60 s, respectively, per projection. A medium-energy collimator and three low-energy collimators were tested. SPECT images were reconstructed using the ordered subset expectation maximization (OSEM) method with attenuation correction (Chang method) and scatter correction (triple-energy-windows method). Image quality was evaluated using the contrast-to-noise ratio (CNR) for detectability and the contrast recovery coefficient (CRC) for quantitavity. The low-energy, high-sensitivity collimator exhibited the best detectability among the four types of collimators, with a maximum CNR value of 43. In contrast, the low-energy, high-resolution collimator exhibited excellent quantitavity, with a maximum CRC value of 102%. Scatter correction improved the image quality. In particular, the CRC value almost doubled after scatter correction. The detection of spheres smaller than 20 mm in diameter was difficult. In summary, low-energy collimators were suitable for the SPECT imaging of 211At. In addition, scatter correction was extremely effective in improving the image quality. The feasibility of 211At SPECT was demonstrated for lesions larger than 20 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zalutsky MR, Reardon DA, Akabani G, Coleman R, Friedman AH, Friedman HS, et al. Clinical experience with a-particle–emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–8.

    Article  CAS  PubMed  Google Scholar 

  2. Palm S, Bäck T, Aneheima E, Hallqvist A, Hultborn R, Jacobsson L, et al. Evaluation of therapeutic efficacy of 211At-labeled farletuzumab in an intraperitoneal mouse model of disseminated ovarian cancer. Trans Oncol. 2021;14: 100873.

    Article  CAS  Google Scholar 

  3. Watabe T, Nakashima KK, Liu Y, Shirakami Y, Ooe K, Toyoshima A, et al. Enhancement of 211At uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted a-therapy of thyroid cancer. J Nucl Med. 2019;60:1301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-emitters for radiotherapy: from basic radiochemistry to clinical studies—Part 1. J Nucl Med. 2018;59:878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-emitters for radiotherapy: from basic radiochemistry to clinical studies—Part 2. J Nucl Med. 2018;59:1020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kozempel J, Mokhodoeva O, Vlk M. Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules. 2018;23:581–98.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals based on alpha emitters: recent developments for medical applications. Pharmaceutics. 2021;13:1123–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry and applications. Pharmaceutics. 2021;13:49–76.

    Article  CAS  Google Scholar 

  9. Nagato Y, Yamaguchi M, Watanabe S, Ishikawa N, Kawachi N, Watanabe H. Astatine-211 imaging by a Compton camera for targeted radiotherapy. Appl Radiat Isot. 2018;139:238–43.

    Article  Google Scholar 

  10. Omata A, Kataoka J, Fujieda K, Sato S, Kuriyama E, Kato H, et al. Performance demonstration of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging. Sci Rep. 2020;10:14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turkington TG, Zalutsky MR, Jaszczak RJ, Garg PK, Vaidyanathan G, Coleman RE. Measureing astatine-211 sidributions with SPECT. Phys Med Biol. 1993;38:1121–30.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson EL, Turkington TG, Jaszczak RJ, Gilland DR, Vaidyanathan G, Greer KL, et al. Qunantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol. 1995;22:45–54.

    Article  CAS  PubMed  Google Scholar 

  13. Cederkrantz E, Andersson H, Bernhardt P, Ba¨ck T, Hultborn R, Jacobsson L, et al. Absorbed doses and risk estimates of 211At-MX35 F(ab’)2 in intraperitoneal therapy of ovarian cancer patients. Int J Radiation Oncol Biol Phys. 2015;93:569–76.

    Article  CAS  Google Scholar 

  14. Andersson H, Cederkrantz E, Ba¨ck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients. Pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2—A phase I study. J Nucl Med. 2009;50:1153–60.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi A, Miwa K, Sasaki M, Baba S. A Monte Carlo study on 223Ra imaging for unsealed radionuclide therapy. Med Phys. 2016;43:2965–74.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi A, Baba SM. Assessment of collimators in radium-223 imaging with channelized Hotelling observer: a simulation study. Ann Nucl Med. 2018;32:649–57.

    Article  PubMed  Google Scholar 

  17. Owaki Y, Nakahara T, Kosaka T, Fukada J, Kumabe A, Ichimura A, et al. Ra-223 SPECT for semi-quantitative analysis in comparison with Tc-99m HMDP SPECT: phantom study and initial clinical experience. EJNMMI Res. 2017;7:81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. https://inis.iaea.org/search/search.aspx?orig_q=RN:25073254. Accessed 1994.

  19. Liard E, Williams ED. The optimum technique for 201Tl tomography of myocardium: an investigation using phantoms. Phys Med Biol. 1987;32:985–1000.

    Article  Google Scholar 

  20. Takahashi A, Himuro H, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys. 2015;42:1926–35.

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka T, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for 123I imaging. Phys Med Biol. 2007;52:4409–25.

    Article  CAS  PubMed  Google Scholar 

  22. http://nm.jsrt.or.jp/prominence_dl/book

  23. Takahashi A, Funada K, Himuro K, Baba S, Sasaki M. Impact of collimator on DaT-SPECT imaging: Monte Carlo simulation study. Radiol Med Diag Imaging. 2020;2:1–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Takahashi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, A., Kajiya, R., Baba, S. et al. Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT. Radiol Phys Technol 16, 102–108 (2023). https://doi.org/10.1007/s12194-023-00702-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00702-9

Keywords

Navigation