Skip to main content
Log in

miR-27a-3p relieves heat stress-induced mitochondrial damage and aberrant milk protein synthesis through MEK/ERK pathway in BMECs

  • Original Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

With global warming, heat stress has become a primary factor that compromises the health and milk quality of dairy cows. Here, we investigated the function and underlying regulatory mechanism of miR-27a-3p in bovine mammary epithelial cells (BMECs) under heat-stress conditions. The current study showed that miR-27a-3p could prevent heat stress-induced BMEC oxidative stress and mitochondrial damage by regulating the balance between mitochondrial fission and fusion processes. Importantly, we found that miR-27a-3p could increase cell proliferation under heat stress conditions by regulating the MEK/ERK pathway and cyclin D1/E1. Interestingly, miR-27a-3p is also involved in the regulation of milk protein synthesis-related protein expression, such as CSN2 and ELF5. Inhibition of the MEK/ERK signaling pathway by AZD6244 blocked the regulatory function of miR-27a-3p in cell proliferation and milk protein synthesis in BMECs under heat stress conditions. Our findings demonstrated that miR-27a-3p protects BMECs from heat stress-induced oxidative stress and mitochondrial damage through the MEK/ERK pathway, thereby promoting BMECs proliferation and lactation in dairy cows.

Graphical Abstract

The potential regulatory mechanism of miR-27a-3p in attenuating heat stress-induced apoptosis and lactation defect in BMECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement 

All data will be made available upon reasonable request by emailing the corresponding author.

References

  • Akbarian A, Michiels J, Degroote J, Majdeddin M, Golian A, De Smet S (2016) Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J Anim Sci Biotechnol 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • BelhadjSlimen I, Najar T, Ghram A, Abdrrabba M (2016) Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (berl) 100:401–412

    Article  CAS  Google Scholar 

  • Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97:471–486

    Article  CAS  PubMed  Google Scholar 

  • Chen KL, Wang HL, Jiang LZ, Qian Y, Xing GD (2020) Heat stress induces apoptosis through disruption of dynamic mitochondrial networks in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 56(4):322–331

    Article  CAS  PubMed  Google Scholar 

  • Fan K, Ding X, Zang Z, Zhang Y, Tang X, Pei X, Chen Q, Yin H, Zheng X, Chen Y et al (2022) Drp1-mediated mitochondrial metabolic dysfunction inhibits the tumor growth of pituitary adenomas. Oxid Med Cell Longev 2022:5652586

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Gao S, Ouyang J, Ma L, Bu D (2021) Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals (Basel) 11(3):726

  • Han J, Mendell JT (2022) MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci 48(1):26–39

  • Hou X, Zhu S, Zhang H, Li C, Qiu D, Ge J, Guo X, Wang Q (2019) Mitofusin1 in oocyte is essential for female fertility. Redox Biol 21:101110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt H, Deminice R, Yoshihara T, Powers SK (2019) Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys 662:49–60

    Article  CAS  PubMed  Google Scholar 

  • Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D (2018) Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 10(3):e8166

  • Leroy J, Rizos D, Sturmey R, Bossaert P, Gutierrez-Adan A, Hoeck VV, Valckx S, Bols P (2011) Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reprod Fertil Dev 24(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Lettieri-Barbato D, Aquilano K, Punziano C, Minopoli G, Faraonio R (2022) MicroRNAs, Long Non-coding RNAs, and circular RNAs in the redox control of cell senescence. Antioxidants (Basel) 11(3):480

    Article  CAS  PubMed  Google Scholar 

  • Liossis SN, Ding XZ, Kiang JG, Tsokos GC (1997) Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-1/CD95-mediated apoptotic cell death in Jurkat T cells. J Immunol 158:5668–5675

    Article  CAS  PubMed  Google Scholar 

  • McCully KS (2018) Review: chemical pathology of homocysteine VI. Aging, cellular senescence, and mitochondrial dysfunction. Ann Clin Lab Sci 48:677–687

    CAS  PubMed  Google Scholar 

  • Niu D, Chen KL, Wang Y, Li XQ, Liu L, Ma X, Duan X (2021) Hexestrol deteriorates oocyte quality via perturbation of mitochondrial dynamics and function. Front Cell Dev Biol 9:708980

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian L, Song X, Ren H, Gong J, Cheng S (2004) Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte. Cell Stress Chaperones 9:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu SW, Choi K, Park JH, Park YM, Kim S, Choi C (2012) Mitofusin 1 inhibits an apoptosis-associated amino-terminal conformational change in Bax, but not its mitochondrial translocation, in a GTPase-dependent manner. Cancer Lett 323:62–68

    Article  CAS  PubMed  Google Scholar 

  • Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 30:513–523

    Article  PubMed  Google Scholar 

  • Song R, Dasgupta C, Mulder C, Zhang L (2022) MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation 145:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XC, Wang Y, Zeng HF, Xi YM, Lin H, Han ZY, Chen KL (2021) SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway. Cell Death Discov 7:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang KQ, Wang YN, Zan LS, Yang WC (2017) miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 100:4102–4112

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang HL, Xing GD, Qian Y, Zhong JF, Chen KL (2021) S-allyl cysteine ameliorates heat stress-induced oxidative stress by activating Nrf2/HO-1 signaling pathway in BMECs. Toxicol Appl Pharmacol 416:115469

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Zeng HF, Zhong JF, Li HX, Chen KL (2022) Identification and bioinformatics analysis of differentially expressed milk exosomal microRNAs in milk exosomes of heat-stressed Holstein cows. Funct Integr Genomics 22:77–87

    Article  CAS  PubMed  Google Scholar 

  • Wu PK, Becker A, Park JI (2020a) Growth inhibitory signaling of the Raf/MEK/ERK pathway. Int J Mol Sci 21(15):5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Zhao B, Ren X, Wu S, Liu W (2020b) MiR-27a-3p targeting GSK3β promotes triple-negative breast cancer proliferation and migration through Wnt/β-Catenin pathway. Cancer Management and Research 12:6241–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Ferdjallah I, Elenberg F, Chen SK, Deuster P, Chen Y (2018) Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice. Life Sci 200:6–14

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu C, Zhang X (2019) Mitochondrial damage mediated by miR-1 overexpression in cancer stem cells. Mol Ther Nucleic Acids 18:938–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yi Y, Meng C, Fang N (2019) MiRNA-575 suppresses angiogenesis by targeting Rab5-MEK-ERK pathway in endothelial cells. Biosci Rep 39(1):BSR20181218

  • Zhu C, Jiang Y, Zhu J, He Y, An X (2020) CircRNA8220 sponges MiR-8516 to regulate cell viability and milk synthesis via Ras/MEK/ERK and PI3K/AKT/mTOR pathways in goat mammary epithelial cells. Animals 10:1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N, Zhu C, Xia W (2021) The role of miR-128-3p through MAPK14 activation in the apoptosis of GC2 spermatocyte cell line following heat stress. Andrology 9:665–672

    Article  CAS  PubMed  Google Scholar 

  • Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank everyone for their support in this study.

Funding

This research was funded by the National Natural Science Foundation of China (32002169, 32102525).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.C. and H.W.; methodology, Y.W.; software, Y.W.; validation, J.W., Q.D. and F.Z.; formal analysis, S.X.; investigation, X.Y.; resources, J.Z.; data curation, K.C.; writing-original draft writing-review and editing, K.C.; visualization, H.W.; supervision, K.C.; project administration, J.Z.; funding acquisition, K.C. All authors have read and agreed to the published version of the manuscript.”

Corresponding authors

Correspondence to Kun-Lin Chen or Hui-Li Wang.

Ethics declarations

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yue Wang and Jie Wu are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, J., Xia, SW. et al. miR-27a-3p relieves heat stress-induced mitochondrial damage and aberrant milk protein synthesis through MEK/ERK pathway in BMECs. Cell Stress and Chaperones 28, 265–274 (2023). https://doi.org/10.1007/s12192-023-01334-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-023-01334-z

Keywords

Navigation