Amm I, Norell D, Wolf DH (2015) Absence of the yeast Hsp31 chaperones of the DJ-1 superfamily perturbs cytoplasmic protein quality control in late growth phase. PLoS One 10(10):e0140363. https://doi.org/10.1371/journal.pone.0140363
Article
PubMed
PubMed Central
CAS
Google Scholar
Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13(4):525–537. https://doi.org/10.1089/ars.2009.2996
Article
PubMed
CAS
Google Scholar
Aslam K, Hazbun TR (2016) Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity. Prion 10(2):103–111. https://doi.org/10.1080/19336896.2016.1141858
Article
PubMed
PubMed Central
CAS
Google Scholar
Aslam K, Tsai C-J, Hazbun TR (2016) The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Prion 10(6):444–465. https://doi.org/10.1080/19336896.2016.1234574
Article
PubMed
PubMed Central
CAS
Google Scholar
Bankapalli K, Saladi S, Awadia SS et al (2015) Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 290(44):26491–26507. https://doi.org/10.1074/jbc.M115.673624
Article
PubMed
PubMed Central
CAS
Google Scholar
Björkblom B, Maple-Grødem J, Puno MR, Odell M, Larsen JP, Møller SG (2014) Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2. Mol Cell Biol 34(16):3024–3040. https://doi.org/10.1128/MCB.00286-14
Article
PubMed
PubMed Central
CAS
Google Scholar
Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827(11-12):1320–1331. https://doi.org/10.1016/j.bbabio.2012.12.002
Article
PubMed
CAS
Google Scholar
Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. https://doi.org/10.1126/science.1077209
Article
PubMed
CAS
Google Scholar
Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200(6):839–850. https://doi.org/10.1083/jcb.201301120
Article
PubMed
PubMed Central
CAS
Google Scholar
Buchan JR, Muhlrad D, Parker R (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183(3):441–455. https://doi.org/10.1083/jcb.200807043
Article
PubMed
PubMed Central
CAS
Google Scholar
Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366. https://doi.org/10.1016/S0092-8674(00)80928-9
Article
PubMed
CAS
Google Scholar
Canet-Avilés RM, Wilson MA, Miller DW et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101(24):9103–9108. https://doi.org/10.1073/pnas.0402959101
Article
PubMed
PubMed Central
Google Scholar
Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, ter-Avanesyan MD, Boguta M (2001) Ssb1 chaperone is a [PSI+] prion-curing factor. Curr Genet 39:62–67, 2, DOI: https://doi.org/10.1007/s002940000180
Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, Jarosz DF (2016) Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167(2):369–381.e12. https://doi.org/10.1016/j.cell.2016.09.017
Article
PubMed
PubMed Central
CAS
Google Scholar
Chan JYH, Chan SHH (2015) Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1. Pharmacol Ther 156:69–74. https://doi.org/10.1016/j.pharmthera.2015.09.005
Article
PubMed
CAS
Google Scholar
Chernoff YO, Lindquist SL, Ono B et al (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880–884. https://doi.org/10.1126/science.7754373
Article
PubMed
CAS
Google Scholar
Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM (2015) Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 96(1):163–174. https://doi.org/10.1111/mmi.12930
Article
PubMed
PubMed Central
CAS
Google Scholar
Fagarasanu A, Mast FD, Knoblach B, Jin Y, Brunner MJ, Logan MR, Glover JNM, Eitzen GA, Aitchison JD, Weisman LS, Rachubinski RA (2009) Myosin-driven peroxisome partitioning in S. cerevisiae. J Cell Biol 186(4):541–554. https://doi.org/10.1083/jcb.200904050
Article
PubMed
PubMed Central
CAS
Google Scholar
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V (2016) Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 161(Pt B):288–305. https://doi.org/10.1016/j.mad.2016.05.002
PubMed
CAS
Article
Google Scholar
Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA (2014) A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J Biol Chem 289(3):1662–1674. https://doi.org/10.1074/jbc.M113.505784
Article
PubMed
CAS
Google Scholar
Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283(43):29126–29134. https://doi.org/10.1074/jbc.M803028200
Article
PubMed
PubMed Central
CAS
Google Scholar
Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691. https://doi.org/10.1038/nature02026
Article
PubMed
CAS
Google Scholar
Jones GW, Tuite MF (2005) Chaperoning prions: the cellular machinery for propagating an infectious protein? BioEssays News Rev Mol Cell Dev Biol 27(8):823–832. https://doi.org/10.1002/bies.20267
Article
CAS
Google Scholar
Kim KS, Kim JS, Park J-Y, Suh YH, Jou I, Joe EH, Park SM (2013) DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum Mol Genet 22(23):4805–4817. https://doi.org/10.1093/hmg/ddt332
Article
PubMed
CAS
Google Scholar
Kim S-J, Park Y-J, Hwang I-Y, Youdim MBH, Park KS, Oh YJ (2012) Nuclear translocation of DJ-1 during oxidative stress-induced neuronal cell death. Free Radic Biol Med 53(4):936–950. https://doi.org/10.1016/j.freeradbiomed.2012.05.035
Article
PubMed
CAS
Google Scholar
Kojima W, Kujuro Y, Okatsu K, Bruno Q, Koyano F, Kimura M, Yamano K, Tanaka K, Matsuda N (2016) Unexpected mitochondrial matrix localization of Parkinson’s disease-related DJ-1 mutants but not wild-type DJ-1. Genes Cells Devoted Mol Cell Mech 21(7):772–788. https://doi.org/10.1111/gtc.12382
Article
CAS
Google Scholar
Malcova I, Farkasovsky M, Senohrabkova L, Vasicova P, Hasek J (2016) New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae. FEMS Yeast Res 16(3):fow027. https://doi.org/10.1093/femsyr/fow027
Article
PubMed
CAS
Google Scholar
Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441(7096):1007–1010. https://doi.org/10.1038/nature04737
Article
PubMed
CAS
Google Scholar
Miller SBM, Mogk A, Bukau B (2015) Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J Mol Biol 427(7):1564–1574. https://doi.org/10.1016/j.jmb.2015.02.006
Article
PubMed
CAS
Google Scholar
Miller-Fleming L, Antas P, Pais TF, Smalley JL, Giorgini F, Outeiro TF (2014) Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc Natl Acad Sci U S A 111(19):7012–7017. https://doi.org/10.1073/pnas.1319221111
Article
PubMed
PubMed Central
CAS
Google Scholar
Monahan Z, Shewmaker F, Pandey UB (2016) Stress granules at the intersection of autophagy and ALS. Brain Res 1649(Pt B):189–200. https://doi.org/10.1016/j.brainres.2016.05.022
Article
PubMed
PubMed Central
CAS
Google Scholar
Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O'Connell JD, Mirrielees J, Ellington AD, Marcotte EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A 106(25):10147–10152. https://doi.org/10.1073/pnas.0812771106
Article
PubMed
PubMed Central
Google Scholar
Natkańska U, Skoneczna A, Sieńko M, Skoneczny M (2017) The budding yeast orthologue of Parkinson’s disease-associated DJ-1 is a multi-stress response protein protecting cells against toxic glycolytic products. Biochim Biophys Acta BBA-Mol Cell Res 1864(1):39–50. https://doi.org/10.1016/j.bbamcr.2016.10.016
Article
CAS
Google Scholar
Olszewska M, Bujarski JJ, Kurpisz M (2012) P-bodies and their functions during mRNA cell cycle: mini-review. Cell Biochem Funct 30(3):177–182. https://doi.org/10.1002/cbf.2804
Article
PubMed
CAS
Google Scholar
Østergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166(3):337–345. https://doi.org/10.1083/jcb.200402120
Article
PubMed
PubMed Central
Google Scholar
Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633. https://doi.org/10.1016/j.bbamcr.2010.12.012
Article
PubMed
CAS
Google Scholar
Renner M, Melki R (2014) Protein aggregation and prionopathies. Pathol Biol (Paris) 62(3):162–168. https://doi.org/10.1016/j.patbio.2014.01.003
Article
CAS
Google Scholar
Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60(2-3):237–243. https://doi.org/10.1016/0378-1119(87)90232-0
Article
PubMed
CAS
Google Scholar
Sami N, Rahman S, Kumar V, Zaidi S, Islam A, Ali S, Ahmad F, Hassan MI (2017) Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int J Neurosci 127(11):1047–1057. https://doi.org/10.1080/00207454.2017.1286339
Article
PubMed
CAS
Google Scholar
Satyanarayana C, Schröder-Köhne S, Craig EA, Schu PV, Horst M (2000) Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett 470(3):232–238. https://doi.org/10.1016/S0014-5793(00)01324-7
Article
PubMed
CAS
Google Scholar
Seo KH, Zhuang N, Cha J-Y, Son D, Lee KH (2012) Crystallization and preliminary X-ray data analysis of a DJ-1 homologue from Arabidopsis thaliana (AtDJ-1D). Acta Crystallograph Sect F Struct Biol Cryst Commun 68(1):101–104. https://doi.org/10.1107/S1744309111050597
Article
CAS
Google Scholar
Skoneczna A, Kaniak A, Skoneczny M (2015) Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 39(6):917–967. https://doi.org/10.1093/femsre/fuv028
Article
PubMed
PubMed Central
CAS
Google Scholar
Skoneczna A, Miciałkiewicz A, Skoneczny M (2007) Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species. Free Radic Biol Med 42(9):1409–1420. https://doi.org/10.1016/j.freeradbiomed.2007.01.042
Article
PubMed
CAS
Google Scholar
Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137(3):671–676
PubMed
PubMed Central
CAS
Google Scholar
Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966–976. https://doi.org/10.1038/ncb2549
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsai C-J, Aslam K, Drendel HM et al (2015) Hsp31 is a stress response chaperone that intervenes in the protein misfolding process. J Biol Chem 290(41):24816–24834. https://doi.org/10.1074/jbc.M115.678367
Article
PubMed
PubMed Central
CAS
Google Scholar
Usami Y, Hatano T, Imai S, Kubo S, Sato S, Saiki S, Fujioka Y, Ohba Y, Sato F, Funayama M, Eguchi H, Shiba K, Ariga H, Shen J, Hattori N (2011) DJ-1 associates with synaptic membranes. Neurobiol Dis 43(3):651–662. https://doi.org/10.1016/j.nbd.2011.05.014
Article
PubMed
CAS
Google Scholar
Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev MMBR 76(2):115–158. https://doi.org/10.1128/MMBR.05018-11
Article
PubMed
CAS
Google Scholar
Weids AJ, Ibstedt S, Tamás MJ, Grant CM (2016) Distinct stress conditions result in aggregation of proteins with similar properties. Sci Rep 6(1):24554. https://doi.org/10.1038/srep24554
Article
PubMed
PubMed Central
CAS
Google Scholar
Wickner RB, Shewmaker FP, Bateman DA, Edskes HK, Gorkovskiy A, Dayani Y, Bezsonov EE (2015) Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev MMBR 79(1):1–17. https://doi.org/10.1128/MMBR.00041-14
Article
PubMed
CAS
Google Scholar
Wilson MA (2014) Metabolic role for yeast DJ-1 superfamily proteins. Proc Natl Acad Sci U S A 111(19):6858–6859. https://doi.org/10.1073/pnas.1405511111
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilson MA, Collins JL, Hod Y, Ringe D, Petsko GA (2003) The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson’s disease. Proc Natl Acad Sci U S A 100(16):9256–9261. https://doi.org/10.1073/pnas.1133288100
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilson MA, Ringe D, Petsko GA (2005) The atomic resolution crystal structure of the YajL (ThiJ) protein from Escherichia coli: a close prokaryotic homologue of the parkinsonism-associated protein DJ-1. J Mol Biol 353(3):678–691. https://doi.org/10.1016/j.jmb.2005.08.033
Article
PubMed
CAS
Google Scholar
Wilson MA, St Amour CV, Collins JL et al (2004) The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proc Natl Acad Sci U S A 101(6):1531–1536. https://doi.org/10.1073/pnas.0308089100
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu H, Ng BSH, Thibault G (2014) Endoplasmic reticulum stress response in yeast and humans. Biosci Rep 34(4):321–330. https://doi.org/10.1042/BSR20140058
Article
CAS
Google Scholar
Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA, Ottersen op, Dawson TM, Dawson VL (2005) Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14:2063–2073. https://doi.org/10.1093/hmg/ddi211
Zhao Q, Su Y, Wang Z, Chen C, Wu T, Huang Y (2014) Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 14(1):86. https://doi.org/10.1186/1471-2148-14-86
Article
PubMed
PubMed Central
CAS
Google Scholar