Skip to main content
Log in

Effect of disulfide crosslinking on thermal transitions and chaperone-like activity of human small heat shock protein HspB1

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Temperature-induced conformational changes of reduced and oxidized HspB1 crosslinked by disulfide bond between single Cys137 of neighboring monomers were analyzed by means of different techniques. Heating of reduced HspB1 was accompanied by irreversible changes of Trp fluorescence, whereas oxidized HspB1 underwent completely reversible changes of fluorescence. Increase of the temperature in the range of 20–70 °C was accompanied by self-association of both reduced and oxidized protein. Further increase of the temperature led to formation of heterogeneous mixture of large self-associated complexes of reduced HspB1 and to formation of smaller and less heterogeneous complexes of oxidized HspB1. Heat-induced changes of oligomeric state of reduced HspB1 were only partially reversible, whereas the corresponding changes of oligomeric state of oxidized HspB1 were almost completely reversible. Oxidation resulted in decrease of chaperone-like activity of HspB1. It is concluded that oxidative stress, inducing formation of disulfide bond, can affect stability and conformational mobility of human HspB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACD:

α-Crystallin domain

DLS:

Dynamic light scattering

DTT:

Dithiothreitol

HEPES:

4(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

MDH:

Malate dehydrogenase

ME:

β-Mercaptoethanol

PMSF:

Phenylmethanesulfonyl fluoride

SEC:

Size-exclusion chromatography

sHsp:

Small heat shock proteins

WT:

Wild type

References

  • Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44(10):1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279(27):28675–28680. doi:10.1074/jbc.M403348200

    Article  CAS  PubMed  Google Scholar 

  • Aquilina JA, Shrestha S, Morris AM, Ecroyd H (2013) Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins alphaB-crystallin and HSP27. J Biol Chem 288(19):13602–13609. doi:10.1074/jbc.M112.443812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26. doi:10.1007/978-0-387-39975-1_2

    Article  PubMed  Google Scholar 

  • Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587(13):1959–1969

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652. doi:10.1038/35023595

    Article  CAS  PubMed  Google Scholar 

  • Bushueva TL, Busel EP, Burstein EA (1980) Some regularities of dynamic accessibility of buried fluorescent residues to external quenchers in proteins. Arch Biochem Biophys 204(1):161–166

    Article  CAS  PubMed  Google Scholar 

  • Christians ES, Ishiwata T, Benjamin IJ (2012) Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 44(10):1632–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587(8):1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7(3–4):436–445. doi:10.1089/ars.2005.7.436

    Article  CAS  PubMed  Google Scholar 

  • Dudich IV, Zav'yalov VP, Pfeil W, Gaestel M, Zav'yalova GA, Denesyuk AI, Korpela T (1995) Dimer structure as a minimum cooperative subunit of small heat-shock proteins. Biochim Biophys Acta 1253(2):163–168

    Article  PubMed  Google Scholar 

  • Eaton P, Byers HL, Leeds N, Ward MA, Shattock MJ (2002a) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277(12):9806–9811. doi:10.1074/jbc.M111454200

    Article  CAS  PubMed  Google Scholar 

  • Eaton P, Fuller W, Shattock MJ (2002b) S-thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation. J Biol Chem 277(24):21189–21196. doi:10.1074/jbc.M200591200

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274(21):14867–14874

    Article  CAS  PubMed  Google Scholar 

  • Hochberg GK, Benesch JL (2014) Dynamical structure of alphaB-crystallin. Prog Biophys Mol Biol. doi:10.1016/j.pbiomolbio.2014.03.003

    PubMed  Google Scholar 

  • Kampinga HH, Garrido C (2012) HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol 44(10):1706–1710

    Article  CAS  PubMed  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24(10):3633–3642

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2006) Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281(12):8169–8174

    Article  CAS  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2012) Roles of the N- and C-terminal sequences in Hsp27 self-association and chaperone activity. Protein Sci 21(1):122–133. doi:10.1002/pro.761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS ONE 8(11):e81207. doi:10.1371/journal.pone.0081207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48(18):3828–3837. doi:10.1021/bi900212j

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7(2):167–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mymrikov EV, Bukach OV, Seit-Nebi AS, Gusev NB (2010) The pivotal role of the beta 7 strand in the intersubunit contacts of different human small heat shock proteins. Cell Stress Chaperones 15(4):365–377. doi:10.1007/s12192-009-0151-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91(4):1123–1159

    Article  CAS  PubMed  Google Scholar 

  • Nefedova VV, Datskevich PN, Sudnitsyna MV, Strelkov SV, Gusev NB (2013) Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies. Biochimie 95(8):1582–1592. doi:10.1016/j.biochi.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti N, Gangadhariah M, Padmanabha S, Santhoshkumar P, Nagaraj RH (2010) The role of the cysteine residue in the chaperone and anti-apoptotic functions of human Hsp27. J Cell Biochem 110(2):408–419. doi:10.1002/jcb.22552

    CAS  PubMed  Google Scholar 

  • Permyakov EA, Burstein EA (1984) Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem 19(3):265–271

    Article  CAS  PubMed  Google Scholar 

  • Skouri-Panet F, Quevillon-Cheruel S, Michiel M, Tardieu A, Finet S (2006) sHSPs under temperature and pressure: the opposite behaviour of lens alpha-crystallins and yeast HSP26. Biochim Biophys Acta 1764(3):372–383. doi:10.1016/j.bbapap.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  • Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94(4):975–984. doi:10.1016/j.biochi.2011.12.018

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi F, Mariani P, Rustichelli F, Amenitsch H, Bennardini F, Mura GM, Coi A, Ganadu ML (2006) Temperature dependence of chaperone-like activity and oligomeric state of alphaB-crystallin. Biochim Biophys Acta 1764(4):677–687. doi:10.1016/j.bbapap.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38(3):433–444

    Article  CAS  PubMed  Google Scholar 

  • Weeds AG, Taylor RS (1975) Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature 257(5521):54–56

    Article  CAS  PubMed  Google Scholar 

  • Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 44(10):1680–1686

    Article  CAS  PubMed  Google Scholar 

  • Zavialov A, Benndorf R, Ehrnsperger M, Zav'yalov V, Dudich I, Buchner J, Gaestel M (1998a) The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22(3–4):163–173

    Article  CAS  PubMed  Google Scholar 

  • Zavialov AV, Gaestel M, Korpela T, Zav’yalov VP (1998b) Thiol/disulfide exchange between small heat shock protein 25 and glutathione. Biochim Biophys Acta 1388(1):123–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor D.I. Levitsky and Dr. O.P. Nikolaeva (A.N. Bach Institute of Biochemistry, Russian Academy of Sciences) who kindly provided subfragment-1 of myosin. This investigation was supported by the Russian Foundation for Basic Research (13-04-00015 to NBG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai B. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalova, A.S., Sudnitsyna, M.V., Semenyuk, P.I. et al. Effect of disulfide crosslinking on thermal transitions and chaperone-like activity of human small heat shock protein HspB1. Cell Stress and Chaperones 19, 963–972 (2014). https://doi.org/10.1007/s12192-014-0520-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0520-9

Keywords

Navigation