Skip to main content

Advertisement

Log in

Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abele D (2011) Temperature adaptation in changing climate marine fish and invertebrates. In: Storey KB, Tannino K (eds) Temperature Adaptation in a Changing Climate. CABI Publishers, Wallingford, UK

    Google Scholar 

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defense systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415

    Article  Google Scholar 

  • Abele D, Tesch C, Wencke P, Pörtner HO (2001) How oxidative stress parameters relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi? Antarct Sci 13:111–118

    Article  Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008a) Antarctic marine molluscs do have an hsp70 heat-shock response. Cell Stress Chaperon 13:39–49

    Article  CAS  Google Scholar 

  • Clark MS, Geissler P, Waller C, Fraser KPP, Barnes DKA, Peck LS (2008b) Low heat-shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Chaperon 13:51–58

    Article  CAS  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793

    Article  PubMed  CAS  Google Scholar 

  • De Aranzamendi MC, Gardenal CN, Martin JP, Bastida R (2009) Limpets of the genus Nacella (Patellogastropoda) from the Southwestern Atlantic: species identification based on molecular data. J Molluscan Stud 75:241–251

    Article  Google Scholar 

  • Denny MW, Miller LP, Harley CDG (2006) Thermal stress on intertidal limpets: long-term hindcasts and lethal limits. J Ex Biol 209:2420–2431

    Article  Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in-situ exposure to heat stress. Biol Bull 215:173–181

    Article  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Gracey AY, Chaney ML, Boomhower JP, Tyburczy WR, Connor K, Somero GN (2008) Rhythms of gene expression in a fluctuating intertidal environment. Curr Biol 18:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  PubMed  CAS  Google Scholar 

  • Heise K, Puntarulo S, Pörtner HO, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol C 134:79–90

    Article  CAS  Google Scholar 

  • Helmuth B, Harley CDG, Halpin PM, O’Donnell MJ, Hofmann GE, Blanchette CA (2006a) Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–1017

    Article  Google Scholar 

  • Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin PM, Harley CDG, O’Donnell MJ, Hofmann GE, Menge B, Strickland D (2006b) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–479

    Article  Google Scholar 

  • Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (2010) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol 157:765–778

    Article  CAS  Google Scholar 

  • Hofmann GE (1999) Ecologically relevant variation in induction and function of heat-shock proteins in marine organisms. Am Zool 39:889–900

    CAS  Google Scholar 

  • Hofmann GE (2005) Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integr Comp Biol 45:247–255

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  PubMed  CAS  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Lindquist S (1980) Varying patterns of protein synthesis in Drosophila during heat-shock: implications for regulations. Dev Biol 77:463–479

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1981) Regulation of protein synthesis during heat-shock. Nature 293:311–314

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Livingstone DR, Lips F, Garcia Martinez P, Pipe RK (1992) Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar Biol 112:265–276

    Article  CAS  Google Scholar 

  • Malanga G, Estevez MS, Calvo J, Puntarulo S (2004) Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel. Aquat Toxicol 69:299–309

    Article  PubMed  CAS  Google Scholar 

  • Malanga G, Estevez MS, Calvo J, Abele D, Puntarulo S (2005) Oxidative stress in gills of limpets from the Beagle Channel: comparison with limpets from the Antarctic. Sci Mar 69:297–304

    CAS  Google Scholar 

  • Moore M, Folt C (1993) Zooplankton body size and community structure: effects of thermal and toxicant stress. Trends Ecol Evol 8:178–183

    Article  PubMed  CAS  Google Scholar 

  • Morley SA, Clark MS, Peck LS (2010) Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. J Exp Mar Biol Ecol 390:1–5

    Article  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Ozawa T (2007) Worldwide phylogeography of limpets of the order Patellogastropoda: molecular, morphological and palaeontological evidence. J Molluscan Stud 73:79–99

    Article  Google Scholar 

  • Osovitz CJ, Hofmann GE (2005) Thermal history-dependent expression of the hsp70 gene in purple sea urchins: biogeographic patterns and the effect of temperature acclimation. J Exp Mar Biol Ecol 327:134–143

    Article  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance—degradation and reactivation of damaged proteins. Ann Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Powell AWB (1973) The patellid limpets of the world (Patellidae). Indo-Pacific Mollusca 3:75–206

    Google Scholar 

  • Reznick D, Butler MJ, Rodd H (2001) Life-history in guppies. VII. The comparative ecology of high- and low-predation environments. Am Nat 157:12–26

    Article  Google Scholar 

  • Sanders BM, Hope C, Pascoe VM, Martin LS (1991) Characterization of the stress protein response in two species of Collisella limpets with different temperature tolerances. Physiol Zool 64:1471–1489

    CAS  Google Scholar 

  • Slatkin (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789

    Article  PubMed  Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1

    Article  PubMed  Google Scholar 

  • Sorte CJB, Hofmann GE (2004) Changes in latitudes, changes in aptitudes: Nucella canaliculata (Mollusca: Gastropoda) is more stressed at its range edge. Mar Ecol Prog Ser 274:263–268

    Article  Google Scholar 

  • Storti RV, Scott MP, Rich A, Pardue ML (1980) Translational control of protein synthesis in response to heat-shock in D. melanogaster cells. Cell 22:825–834

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L (2002) The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Integr Comp Biol 42:797–807

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L (2008) The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response. Physiol Biochem Zool 81:709–717

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L (2010) Variation in the heat-shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L, Sanford E (2003) Heat-shock protein 70 (hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (genus: Tegula). Biol Bull 205:276–284

    Article  PubMed  CAS  Google Scholar 

  • Tomanek L, Somero G (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    PubMed  Google Scholar 

  • Valdovinos C, Rüth M (2005) Nacellidae limpets of the southern end of South America: taxonomy and distribution. Rev Chil Hist Nat 78:497–517

    Article  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034–research0034.11

    Article  PubMed  Google Scholar 

  • Vermeij (1973) Morphological patterns in high-intertidal gastropods: adaptive strategies and their limitations. Mar Biol 20:319–346

    Article  Google Scholar 

  • Weihe E, Abele D (2008) Differences in the physiological response of inter- and subtidal Antarctic limpets Nacella concinna to aerial exposure. Aquat Biol 4:155–166

    Article  Google Scholar 

  • Weihe E, Kriews M, Abele D (2010) Differences in heavy metal concentrations and in the response of the antioxidant system to hypoxia and air exposure in the Antarctic limpet Nacella concinna. Mar Environ Res 69:127–135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kurt Paschke from the UACh, Puerto Montt and Erika Mutschke, Carlos Rios and Rodrigo Mancilla from the Universidad de Magallanes, Punta Arenas for their great support during the experimental field work, and two anonymous reviewers for the time they invested and their help in improving the manuscript. The study was funded by the German Academic Exchange Service (DAAD) grant number D/08/46637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Abele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöhlmann, K., Koenigstein, S., Alter, K. et al. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats. Cell Stress and Chaperones 16, 621–632 (2011). https://doi.org/10.1007/s12192-011-0272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0272-8

Keywords

Navigation