Skip to main content
Log in

Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo SF, Tsigkari KK, Grammenoudi S, Skoulakis EM (2007) In vivo functional specificity and homeostasis of Drosophila 14-3-3 proteins. Genetics 177:239–253

    Article  CAS  PubMed  Google Scholar 

  • Agnello M, Roccheri MC (2010) Apoptosis: focus on sea urchin development. Apoptosis 15:322–330

    Article  PubMed  Google Scholar 

  • Agnello M, Filosto S, Scudiero R, Rinaldi AM, Roccheri MC (2007) Cadmium induces apoptotic response in sea urchin embryos. Cell Stress Chaperones 12:44–50

    Article  CAS  PubMed  Google Scholar 

  • Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman J (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Autier P, Dore JF, Schifflers E et al (1995) Melanoma and use of sunscreens: an aortic case control study in Germany, Belgium and France. Int J Cancer 61:749–755

    Article  CAS  PubMed  Google Scholar 

  • Banaszak AT, Lesser MP (2009) Effects of solar ultraviolet radiation on coral reef organisms. Photochem Photobiol Sci 8:1276–1294

    Article  CAS  PubMed  Google Scholar 

  • Batel R, Fafandjel M, Blumbach B, Schröder HC, Hassanein HM, Müller IM, Müller WE (1998) Expression of the human XPB/ERCC-3 excision repair gene-homolog in the sponge Geodia cydonium after exposure to ultraviolet radiation. Mutat Res 409:123–133

    CAS  PubMed  Google Scholar 

  • Bonaventura R, Poma V, Costa C, Matranga V (2005) UV-B radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun 328:150–157

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura R, Poma V, Russo R, Zito F, Matranga V (2006) Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos. Mar Biol 149:79–86

    Article  CAS  Google Scholar 

  • Chaudhri M, Scarabel M, Aitken A (2003) Mammalian and yeast 14-3-3 isoforms form distinct patternsof dimers in vivo. Biochem Biophys Res Commun 300:679–685

    Article  CAS  PubMed  Google Scholar 

  • Choi KC, Lee S, Kwak SY, Kim MS, Choi HK, Kim KH, Chung JH, Park SH (2005) Increased expression of 14-3-3 varepsilon protein in intrinsically aged and photoaged human skin in vivo. Mech Ageing Dev 126:629–636

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente H, Lamana A, Mittelbrunn M, Perez-Gala S, Gonzalez S, García-Diez A, Vega M, Sanchez-Madrid F (2009) Identification of genes responsive to solar simulated UV radiation in human monocyte-derived dendritic cells. PLoS ONE 4(8):e6735

    Article  PubMed  Google Scholar 

  • Diffey BL (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13

    Article  CAS  PubMed  Google Scholar 

  • Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884

    Article  CAS  PubMed  Google Scholar 

  • Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137:223–235

    Article  CAS  PubMed  Google Scholar 

  • Dunne RP, Brown BE (1996) Penetration of solar UVB radiation in shallow tropical waters and its potential biologicaleffects on coral reefs; results from the central Indian Ocean and Andaman Sea. Mar Ecol Prog Ser 144:109–118

    Article  Google Scholar 

  • Fernandez-Guerra A et al (2006) The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 300:238–251

    Article  CAS  PubMed  Google Scholar 

  • Gies P, Roy C, Javorniczky J, Henderson S, Lemus-Deschamps L, Driscoll C (2004) Global Solar UV Index: Australian measurements, forecasts and comparison with the UK. Photochem Photobiol 79:32–39

    Article  CAS  PubMed  Google Scholar 

  • Hader DP (2000) Effects of solar UV-B radiation on aquatic ecosystems. Adv Space Res 26:2029–2040

    Article  CAS  PubMed  Google Scholar 

  • Hanson KM, Gratton E, Bardeen CJ (2006) Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Radic Biol Med 41:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Holick MF (1995) Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 61:638S–645S

    CAS  PubMed  Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207

    Article  PubMed  Google Scholar 

  • Jeanclos EM, Lin L, Treuil MW, Rao J, DeCoster MA, Anand R (2001) The chaperone protein 14-3-3 eta interacts with the nicotinic acetylcholine receptor a4 subunit. J Biol Chem 276:28281–28290

    Article  CAS  PubMed  Google Scholar 

  • Kiyomoto M, Zito F, Costa C, Poma V, Sciarrino S, Matranga V (2007) Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos. Dev Growth Differ 49:731–741

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Yamamoto M (2000) Members of Arabidopsis 14-3-3 gene family trans-complement two types of defects in fission yeast. Plant Sci 158:155–161

    Article  CAS  PubMed  Google Scholar 

  • Lau JMC, Wu C, Muslin AJ (2006) Differential role of 14-3-3 family members in Xenopus development. Dev Dyn 235:1761–1776

    Article  CAS  PubMed  Google Scholar 

  • Leffers H, Madsen P, Rasmussen HH, Honore B, Andersen AH, Walbum E, Vandekerckhove J, Celis JE (1993) Molecular cloning and expression of the transformation sensitive epithelial Marker Stratifin: a member of a protein family that has been involved in the protein kinase C signalling pathway. J Mol Biol 231:982–998

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP (2010) Depth-dependent effects of ultraviolet radiation on survivorship, oxidative stress and DNA damage in sea urchin (Strongylocentrotus droebachiensis) embryos from the Gulf of Maine. Photochem Photobiol 86:382–388

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Kruse VA, Barry TM (2003) Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J Exp Biol 206:4097–4103

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loser K, Beissert S (2009) Regulation of cutaneous immunity by the environment: an important role for UV irradiation and vitamin D. Int Immunopharmacol 9:587–589

    Article  CAS  PubMed  Google Scholar 

  • Love AC, Lee AE, Andrews ME, Raff RA (2008) Co-option and dissociation in larval origins and evolution: the sea urchin larval gut. Evol Dev 10:74–88

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381:329–342

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Ananthaswamy HN (2004) Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195(3):298–308

    Article  CAS  PubMed  Google Scholar 

  • MGC Project Team (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 14:2121–2127

    Article  Google Scholar 

  • Minokawa T, Rasta JP, Arenas-Mena C, Franco CB, Davidson EH (2004) Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns 4:449–456

    Article  CAS  PubMed  Google Scholar 

  • Moore BE, Perez VJ (1967) In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice Hall, Englewood Cliffs, pp 343–359

    Google Scholar 

  • Morrison DK (2008) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19:16–23

    Article  PubMed  Google Scholar 

  • Perego L, Berruti G (1997) Molecular cloning and tissue-specific expression of the mouse homologue of the rat brain14-3-3 Q protein: characterization of its cellular and developmental pattern of expression in the male germ line. Mol Reprod Dev 47:370–379

    Article  CAS  PubMed  Google Scholar 

  • Petrocelli T, Slingerland J (2000) UVB induced cell cycle checkpoints in an early stage human melanoma line WM35. Oncogene 19:4480–4490

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Bowles DJ (1999) Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol 119:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300(1):321–334

    Article  CAS  PubMed  Google Scholar 

  • Roccheri MC, Matranga V (2009) Cellular, biochemical and molecular effects of cadmium on marine invertebrates: focus on Paracentrotus lividus sea urchin development. In: Parvau RG (ed) Cadmium in the Environment. Nova Science Publishers Inc., New York. pp 337–366 ISBN: 1607419343 ISBN13: 9781607419341

  • Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–87

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist M, Alsterfjord M, Larsson C, Sommarin M (2001) Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol 127:142–149

    Article  CAS  PubMed  Google Scholar 

  • Russo R, Bonaventura R, Zito F, Schroder HC, Muller I, Muller WE, Matranga V (2003) Stress to cadmium monitored by metallothionein gene induction in Paracentrotus lividus embryos. Cell Stress Chaperones 8:232–241

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Samanta MP, Tongprasit W, Istrail S, Cameron RA, Tu Q, Davidson EH, Stolc V (2006) The transcriptome of the sea urchin embryo. Science 314(5801):960–962

    Article  CAS  PubMed  Google Scholar 

  • Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WE, Matranga V (2005) DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. Prog Mol Subcell Biol 39:111–137

    Article  PubMed  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952

    Article  PubMed  Google Scholar 

  • Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. Science 255:952–959

    Article  CAS  PubMed  Google Scholar 

  • Tabunoki H, Shimada T, Banno Y, Sato R, Kajiwara H, Mita K, Satoh J (2008) Identification of Bombyx mori 14-3-3 orthologs and the interactor Hsp60. Neurosci Res 61:271–280

    Article  CAS  PubMed  Google Scholar 

  • Tedetti M, Sempéré R (2007) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43(4):384–398

    Article  CAS  PubMed  Google Scholar 

  • Wessel GM, McClay DR (1985) Sequential expression of germ-layer specific molecules in the sea urchin embryo. Dev Biol 111:451–463

    Article  CAS  PubMed  Google Scholar 

  • Wiens M et al (1998) Induction of gene expression of the chaperones 14–3–3 and hsp70 by PCB 118 (2, 3′, 4, 4′, 5-pentachloro-bipheyl) in the marine sponge Geodia Cynodium: novel biomarkers for polychlorinated biphenyls. Mar Ecol Prog Ser 165:247–257

    Article  CAS  Google Scholar 

  • Zito F, Matranga V (2009) Secondary mesenchyme cells as potential stem cells of the sea urchin embryo. In: Rinkevich B, Matranga V (eds) Stem cells in marine organisms, Springer, Berlin. pp 187–213 doi:10.1007/978-90-481-2767-2

Download references

Acknowledgements

We thank the Marie Curie Ph.D. student K. Karakostis, for his initial useful support to QPCR experiments. This research was supported in part by: EU-UV-TOX Project Contract EVK3-CT-1999-00005, ASI MoMA Project Contract N°1/014/06/0 and EU-ITN Biomintec Project, Contract N°215507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Matranga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, R., Zito, F., Costa, C. et al. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress and Chaperones 15, 993–1001 (2010). https://doi.org/10.1007/s12192-010-0210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0210-1

Keywords

Navigation