Skip to main content
Log in

Apoptosis: focus on sea urchin development

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  2. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  3. Lockshin RA, Zakeri Z (2002) Cell death during development. J Immunol Methods 265:3–20

    Article  PubMed  Google Scholar 

  4. Twomey C, McCarthy JV (2005) Pathways of apoptosis and importance in development. J Cell Mol Med 9:345–359

    Article  CAS  PubMed  Google Scholar 

  5. Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Review. Histochem Cell Biol 126(2):149–158

    Article  CAS  PubMed  Google Scholar 

  6. Huettenbrenner S, Maier S, Leisser C, Polgar D, Strasser S, Grusch M, Krupitza G (2003) The evolution of cell death programs as prerequisites of multicellularity. Review. Mutat Res 543(3):235–249. doi:10.1016/S1383-5742(02)00110-2

    Article  CAS  PubMed  Google Scholar 

  7. Roccheri MC, Tipa C, Bonaventura R, Matranga V (2002) Physiological and induced apoptosis in sea urchin larvae undergoing metamorphosis. Int J Dev Biol 46(6):801–806

    PubMed  Google Scholar 

  8. Yazaki I (2002) Mechanisms of sea urchin metamorphosis: stimuli and responses. In: Yokota Y, Matranga V, Smolenicka Z (eds) The sea urchin: from basic biology to aquaculture. Balkema publishers-Swets & Zeitlinger, Lisse, pp 51–71. ISBN 90-5809-379-4

    Google Scholar 

  9. Sato Y, Kaneko H, Negishi S, Yazaki I (2006) Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus. Cell Tissue Res 326:851–860

    Article  PubMed  Google Scholar 

  10. Roccheri MC, Barbata G, Cardinale F, Tipa C, Bosco L, Oliva OA, Cascino D, Giudice G (1997) Apoptosis in sea urchin embryos. Biochem Biophys Res Commun 240:359–366

    Article  CAS  PubMed  Google Scholar 

  11. Filosto S, Roccheri MC, Bonaventura R, Matranga V (2008) Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biol Toxicol 24(6):603–610

    Article  CAS  PubMed  Google Scholar 

  12. Agnello M, Filosto S, Scudiero R, Rinaldi AM and Roccheri MC (2006) Cadmium accumulation induces apoptosis in P. lividus embryos. Caryologia 59(4):403–408. http://www1.unifi.it/caryologia/past_volumes/59_4/59-4_gei11.pdf

    Google Scholar 

  13. Agnello M, Filosto S, Scudiero R, Rinaldi AM, Roccheri MC (2007) Cadmium induces apoptotic response in sea urchin embryos. Cell Stress Chaperones 12:44–50

    Article  CAS  PubMed  Google Scholar 

  14. Vega RL, Epel D (2004) Stress-induced apoptosis in sea urchin embryogenesis. Mar Envir Res 58:799–802

    Article  CAS  Google Scholar 

  15. Pellerito C, D’Agati P, Fiore T, Mansueto C, Mansueto V, Stocco G, Nagy L, Pellerito L (2005) Synthesis, structural investigations on organotin(IV) chlorin-e6 complexes, their effect on sea urchin embryonic development and induced apoptosis. J Inorg Biochem 99(6):1294–1305

    Article  CAS  PubMed  Google Scholar 

  16. Lesser MP, Kruse VA, Barry TM (2003) Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J Exp Biol 206(Pt 22):4097–4103

    Article  PubMed  Google Scholar 

  17. Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291(5507):1279–1284. doi:10.1126/science.291.5507.1279

    Article  CAS  PubMed  Google Scholar 

  18. Dickey-Sims C, Robertson AJ, Rupp DE, McCarthy JJ, Coffman JA (2005) Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo. BMC Biol 3:18

    Article  PubMed  Google Scholar 

  19. Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334

    Article  CAS  PubMed  Google Scholar 

  20. Vega Thurber R, Epel D (2007) Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus. Dev Biol 303:336–346

    Article  CAS  PubMed  Google Scholar 

  21. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361

    Article  CAS  PubMed  Google Scholar 

  22. Cameron RA, Holland ND (1985) Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (Lytechinus variegatus). Cell Tissue Res 239:455–458

    Article  CAS  PubMed  Google Scholar 

  23. Chia F, Burke RD (1978) Echinoderm metamorphosis: fate of larval structures. In: Chia F, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 219–234 0444002774, 9780444002778

    Google Scholar 

  24. Greenwood J, Gautier J (2005) From oogenesis through gastrulation: developmental regulation of apoptosis. Semin Cell Dev Biol 16(2):215–224

    Article  CAS  PubMed  Google Scholar 

  25. Kazama M, Asami K, Hino A (2006) Fertilization induced changes in sea urchin sperm: mitochondrial deformation and phosphatidylserine exposure. Mol Reprod Dev 73:1303–1311

    Article  CAS  PubMed  Google Scholar 

  26. Strathmann RR, Staver JM, Hoffman JR (2002) Risk and the evolution of cell-cycle durations of embryos. Evolution 56(4):708–720. doi:10.1554/0014-3820(2002)056[0708:RATEOC]2.0.CO;2

    PubMed  Google Scholar 

  27. Feige U, Morimoto RI, Yahara I, Polla BS (eds) (1996) Stress-inducible cellular responses. Birkhäuser Verlag, Basel, Boston, Berlin. ISBN 3-7643-5205-1

  28. Meier P, Finch A, Evan G (2000) Apoptosis in development. Review. Nature 407:796–801

    Article  CAS  PubMed  Google Scholar 

  29. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  CAS  PubMed  Google Scholar 

  30. Voronina E, Wessel GM (2001) Apoptosis in sea urchin oocytes, eggs, and early embryos. Mol Reprod Dev 60:553–561

    Article  CAS  PubMed  Google Scholar 

  31. Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494

    Article  PubMed  Google Scholar 

  32. Hansen E, Even Y, Genevière AM (2004) The α, β, γ, δ-unsaturated aldehyde 2-trans-4-trans-decadienal disturbs DNA replication and mitotic events in early Sea Urchin embryos. Toxicol Sci 81:190–197

    Article  CAS  PubMed  Google Scholar 

  33. Finkielstein CV, Lewellyn AL, Maller JM (2001) The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage. Proc Natl Acad Sci USA 98:1006–1011

    Google Scholar 

  34. Hensey C, Gautier J (1999) Developmental regulation of induced and programmed cell death in Xenopus embryos. Ann NY Acad Sci 887:105–119

    Google Scholar 

  35. Ikegami R, Hunter P, Yager TD (1999) Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol 209:409–433

    Article  CAS  PubMed  Google Scholar 

  36. Sible JC, Anderson JA, Lewellyn AL, Maller JL (1997) Dev Biol 189:335–346

    Google Scholar 

  37. Epel D (2003) Protection of DNA during early development: adaptations and evolutionary consequences. Evol Dev 5(1):83–88

    Article  CAS  PubMed  Google Scholar 

  38. Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Review. Proc Natl Acad Sci USA 104(6):1745–1750

    Article  CAS  PubMed  Google Scholar 

  39. Marc J, Belle R, Morales J, Cormier P, Mulner-Lorillon O (2004) Formulated glyphosate activates the DNA response checkpoint of the cell cycle leading to the prevention of G2/M transition. Toxicol Sci 82:436–442

    Article  CAS  PubMed  Google Scholar 

  40. Le Bouffant R, Cormier P, Mulner-Lorillon O, Belle R (2006) Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP. J Cell Biochem 99:126–132

    Article  CAS  PubMed  Google Scholar 

  41. Le Bouffant R, Boulben S, Cormier P, Mulner-Lorillon O, Bellé R, Morales J (2008) Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos. Exper Cell Res 314:961–968. doi:10.1016/j.yexcr.2007.12.014

    Article  CAS  Google Scholar 

  42. Le Bouffant R, Mulner-Lorillon O, Morales J, Cormier P, Bellé R (2008) Chromium(III) triggers the DNA-damaged checkpoint of the cell cycle and induces a functional increase of 4E-BP. Chem Res Toxicol 21(2):542–549

    Article  CAS  PubMed  Google Scholar 

  43. Roccheri MC, Di Bernardo MG, Giudice G (1981) Synthesis of heat shock proteins in developing sea urchins. Dev Biol 83:173–177

    Article  CAS  PubMed  Google Scholar 

  44. Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321(1):80–87

    Article  CAS  PubMed  Google Scholar 

  45. Bonaventura R, Poma V, Costa C, Matranga V (2005) UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun 328(1):150–157

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Review. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  47. Rana SV (2008) Metals and apoptosis: recent developments. Review. J Trace Elem Med Biol 22(4):262–284

    Article  CAS  PubMed  Google Scholar 

  48. Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404

    Article  CAS  PubMed  Google Scholar 

  49. Zmasek CM, Zhang Q, Ye Y, Godzik A (2007) Surprising complexity of the ancestral apoptosis network. Gen Biol 8(10):R226. doi:10.1186/gb-2007-8-10-r226

    Article  Google Scholar 

  50. Sea Urchin Genome Sequencing Consortium: Sodergren E, Weinstock GM, Davidson EH, Cameron RA, et al. (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952. doi:10.1126/science.1133609

    Google Scholar 

  51. Sullivan JC, Ryan JF, Watson JA, Webb J, Mullikin JC, Rokhsar D, Finnerty JR (2006) Stella base: the Nematostella vectensis genomics database. Nucleic Acids Res 34:D495–D499

    Article  CAS  PubMed  Google Scholar 

  52. Weill M, Philips A, Chourrout D, Fort P (2005) The caspase family in urochordates: distinct evolutionary fates in ascidians and larvaceans. Biol Cell 97:857–866

    Article  CAS  PubMed  Google Scholar 

  53. Bridgham JT, Wilder JA, Hollocher H, Johnson AL (2003) All in the family: evolutionary and functional relationships among death receptors. Cell Death Differ 10:19–25

    Article  CAS  PubMed  Google Scholar 

  54. Hibino TS, Loza-Coll MA, Messier C, Majeske A, Cohen A, Terwilliger D, Buckley K, Brockton V, Nair S, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  PubMed  Google Scholar 

  55. Cameron RA, Davidson EH (2007) A basal deuterostome genome viewed as a natural experiment. Review. Gene 406(1–2):1–7. doi:10.1016/j.gene.2007.04.031

    Google Scholar 

  56. Pellicanò M, Picone P, Cavalieri V, Carrotta R, Spinelli G, Di Carlo M (2009) The sea urchin embryo: a model to study Alzheimer’s beta amyloid induced toxicity. Arch Biochem Biophys 483:120–126

    Article  PubMed  Google Scholar 

  57. Wang J, Pansky A, Venuti JM, Yaffe D, Nudel U (1998) A sea urchin gene encoding dystrophin-related proteins. Hum Mol Genet 7(4):581–588

    Article  CAS  PubMed  Google Scholar 

  58. Neuman S, Kabana A, Volk T, Yaffe D, Nudel U (2001) The dystrophin/utrophin homologues in Drosophila and in sea urchin. Gene 263:17–29

    Article  CAS  PubMed  Google Scholar 

  59. Le Bouffant R, Cormiera P, Cueffa A, Bell R, Mulner-Lorillona O (2007) Sea urchin embryo as a model for analysis of the signalling pathways linking DNA damage checkpoint, DNA repair and apoptosis. Cell Mol Life Sci 64:1723–1734

    Article  CAS  PubMed  Google Scholar 

  60. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. A. M. Rinaldi for critical contribute, Dr. J. L. Scilabra for language revision, Mr. G. Morici for technical computing assistance. This work was supported by 60% MIUR to M.C. Roccheri and BdS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmela Roccheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnello, M., Roccheri, M.C. Apoptosis: focus on sea urchin development. Apoptosis 15, 322–330 (2010). https://doi.org/10.1007/s10495-009-0420-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0420-0

Keywords

Navigation