Skip to main content
Log in

Analysis of a delayed malaria transmission model including vaccination with waning immunity and reinfection

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

To study the impact of infection delays in human and mosquito populations, vaccination with waning immunity and reinfection on the malaria transmission process, a malaria transmission model with these factors is developed and investigated. The local stability of disease-free and endemic equilibria have been discussed explicitly. By taking the delay as the bifurcation parameter, the existence of Hopf bifurcation is analyzed in four cases. Using normal form theory and center manifold theorem, direction and stability of Hopf bifurcation are discussed. Numerically, the bifurcation diagrams show that both delays can destabilize the endemic equilibrium and cause Hopf bifurcation and irregular oscillations, and that stability switches can occur mainly because of the delay in human. In addition, the malaria transmission case of Nigeria is studied. Numerical analysis reveals that ignoring the waning of immunity and reinfection may underestimate the infection risk and enlarge the critical value of Hopf bifurcation. Moreover, combined with sensitivity analysis, we can see that even though vaccination is not so effective in reducing the basic reproduction number, it is efficient for controlling the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. WHO Guidelines for malaria 2023. https://www.who.int/publications/i/item/9789240086173

  2. Nigeria Population. https://www.so.com/s?q=%E5%B0%BC%E6%97%A5%E5%88%A9%E4%BA%9A%E4%BA%BA%E5%8F%A3

  3. Ross, R.: The Prevention of Malaria. John Murray, London (1911)

    Google Scholar 

  4. Macdonald, G.: The Epidemiology and Control of Malaria, The Epidemiology and Control of Malaria. Oxford University Press, London (1957)

    Google Scholar 

  5. Bailey, N.: The Biomathematics of Malaria. Charles Griffin, London (1982)

    Google Scholar 

  6. Aron, J., May, R.: The Population Dynamics of Malaria. In: Anderson, R.M. (ed.) The Population Dynamics of Infectious Disease: Theory and Applications. Champman and Hall, London (1982)

    Google Scholar 

  7. Paaijmans, K., Cator, L., Thomas, M.: Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. Plos One 8, e55777 (2013)

    Article  Google Scholar 

  8. Zhang, Y., Li, L., Huang, J., Liu, Y.: Stability and Hopf bifurcation analysis of a vector-borne disease model with two delays and reinfection. Comput. Math. Meth. Med. 1, 1–18 (2021)

    Google Scholar 

  9. Lakhani, S.: Early clinical pathologists: Edward Jenner(1749–1823). J. Clin. Pathol. 45, 756–758 (1992)

    Article  Google Scholar 

  10. Longini, I., Halloran, M.: Strategy for distribution of inflfluenza vaccine to high-risk groups and children. Am. J. Epidemiol. 161, 303–306 (2005)

    Article  Google Scholar 

  11. Hviid, P.: Naturally acquired immunity to Plasmodium falciparum in Africa. Acta Trop. 95, 265–269 (2005)

    Article  Google Scholar 

  12. Zhao, H., Shi, Y., Zhang, X.: Dynamic analysis of a malaria reaction–diffusion model with periodic delays and vector bias. Math. Biosci. Eng. 19, 2538–2574 (2022)

    Article  MathSciNet  Google Scholar 

  13. Shi, Y., Zhao, H.: Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J. Math. Biol. 82, 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  14. Wang, J., Chen, Y.: Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl. Math. Lett. 100, 106052 (2020)

    Article  MathSciNet  Google Scholar 

  15. Wang, S., Hu, L., Nie, L.: Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse. Chaos Solit. Fract. 150, 111216 (2021)

    Article  MathSciNet  Google Scholar 

  16. Olutimo, A., Mbah, N., Abass, F., Adeyanju, A.: Effect of environmental immunity on mathematical modeling of malaria transmission between vector and host population. J. Appl. Sci. Environ. Manag. 28(1), 205–212 (2024)

    Google Scholar 

  17. Okosun, K., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106, 136–145 (2011)

    Article  Google Scholar 

  18. Xu, J., Zhou, Y.: Hopf bifurcation and its stability for a vector-borne disease model with delay and reinfection. Appl. Math. Modelling 40, 1685–1702 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wan, H., Cui, J.: A malaria model with two delays. Disc. Dyn. Nat. Soc. 2013, 601265 (2013)

    MathSciNet  Google Scholar 

  20. Rehman, A., Singh, R., Singh, J.: Mathematical analysis of multi-compartmental malaria transmission model with reinfection. Chaos Solit. Fract. 163, 112527 (2022)

    Article  MathSciNet  Google Scholar 

  21. Castillo-Chevez, C., Thieme, H.: Asymptotically autonomous epidemic models. In: Mathematical Sciences Institute, Cornell University (1994)

  22. Hale, J.: Theory of Function Differential Equations. Springer, Heidelberg (1977)

    Book  Google Scholar 

  23. Driessche, P., Watmough, J.: Further notes on the basic reproduction number. In: Mathematical Epidemiology Lecture Notes in Mathematics, 1945 (2008)

  24. Busenberg, S., Cooke, K.: Vertically transmitted diseases: Models and dynamics, 23. Springer, Biomathematics, NewYork (1993)

  25. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  26. Population and increase rate of Nigeria in (2022). https://www.108hei.com/archives/6675

  27. Life expectancy (2019). https://www.who.int/countries/nga/

  28. Andreychuk, S., Yakob, L.: Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol. J. Theor. Biol. 542, 111110 (2022)

    Article  MathSciNet  Google Scholar 

  29. Wang, X., Zou, X.: Modeling the potential role of engineered symbiotic bacteria in malaria control. Bull. Math. Biol. 81, 2569–2595 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Li has received funding from PhD research startup foundation of Fuyang Normal University (2021KYQD0002) and Natural Science Foundation of Anhui Province Education [2022AH051320,2023AH050415]. Z. Teng is supported by the National Natural Science Foundation of P. R. China [11271312, 11001235].

Appendices

Proof of Theorem 3.3

For any \(\phi \in \mathbb {X}\), define a functional \(g(\phi ):=(g_1(\phi ),g_2(\phi ),g_3(\phi ),g_4(\phi ),g_5(\phi ))^T:\mathbb {X}\rightarrow \mathbb {R}^5\) as

$$\begin{aligned} g(\phi )= \begin{pmatrix} \displaystyle b_h(1-p)-\beta _h\phi _1(-\tau _h)\phi _5(-\tau _h)-(\mu _h+\eta )\phi _1(0) \\ \displaystyle b_hp+\eta \phi _1(0)-\epsilon \beta _h\phi _2(-\tau _h)\phi _5(-\tau _h)-\mu _h \phi _2(0) \\ \displaystyle \beta _h( \phi _1(-\tau _h)+\epsilon \phi _2(-\tau _h)+\sigma \phi _4(-\tau _h))\phi _5(-\tau _h)-(\mu _h+\alpha +\gamma )\phi _3(0)\\ \displaystyle \gamma \phi _3(0)-\sigma \beta _h \phi _4(-\tau _h) \phi _5(-\tau _h)-\mu _h \phi _4(0)\\ \displaystyle \beta _m(\frac{b_m}{\mu _m}- \phi _5(-\tau _m))\phi _3(-\tau _m)- \mu _m \phi _5(0) \end{pmatrix}. \end{aligned}$$

Since \(g(\phi )\) is continuous and Lipschitz in each compact set in \(\mathbb {X}\), it follows from Theorems 2.2.1 and 2.2.3 in [22] that there exists a unique solution \(u(t,\phi )=(S_h(t,\phi ),V(t,\phi ),I_h(t,\phi ),R_h(t,\phi ), I_m(t,\phi ))\) with respect to initial value \(\phi \). So the system (1.2) has a unique solution \(u(t,\phi )\) on its maximal existence interval \([0,\sigma _\phi )\). It is easy to see that \(g_i(\phi )\ge 0\) if \(\phi _i(0)\ge 0\), for \(i=1,2,3,4,5\). Therefore, we can get the unique solution \(u(t,\phi )\) on \(\forall t\in [0,\sigma _\phi )\) which is non-negative.

Furthermore, let \(N_h(t):=S_h(t)+V(t)+I_h(t)+R_h(t)\), it is easy to get from system (1.2) that \(\frac{dN_h(t)}{dt}=b_h-\mu _hN_h-\alpha I_h\), which implies \(\limsup _{t\rightarrow \infty }N_h(t)\le \frac{b_h}{\mu _h}\). Besides, \(\limsup _{t\rightarrow \infty }N_m(t)=\frac{b_m}{\mu _m}\). Therefore, \(u(t,\phi )\) is bounded. And then \(\sigma _\phi =\infty \) by Theorem 2.3.1 in [22]. The proof is completed.

Coefficients of the characteristic equations

$$\begin{aligned} u_{04}&=- l_{11} - l_{22} - l_{33} - l_{44} - l_{55},\\ u_{03}&= l_{11} l_{22} + l_{11} l_{33} + l_{11} l_{44} + l_{22} l_{33} + l_{11} l_{55} + l_{22} l_{44} + l_{22} l_{55} + l_{33} l_{44} + l_{33} l_{55} + l_{44} l_{55},\\ u_{02}&=- l_{11} l_{22}( l_{33} + l_{44} + l_{55}) - l_{11} l_{33} ( l_{44} + l_{55} ) - l_{22} l_{55}(l_{33} + l_{44} )\\&\quad - l_{44} l_{55} (l_{33}+ l_{11})- l_{22} l_{33} l_{44},\\ u_{01}&= l_{11} l_{22} l_{33} l_{44} + l_{11} l_{22} l_{33} l_{55} + l_{11} l_{22} l_{44} l_{55} + l_{11} l_{33} l_{44} l_{55} + l_{22} l_{33} l_{44} l_{55},\\ u_{00}&=- l_{11} l_{22} l_{33} l_{44} l_{55},\; u_{14}=- m_{55},\; u_{13}= l_{11} m_{55} + l_{22} m_{55} + l_{33} m_{55} + l_{44} m_{55},\\ u_{12}&=-m_{55} ( l_{11} l_{22} + l_{11} l_{33} + l_{11} l_{44} + l_{22} l_{33} + l_{22} l_{44} + l_{33} l_{44}),\\ u_{11}&=m_{55} ( l_{11} l_{22} l_{33} + l_{11} l_{22} l_{44} + l_{11} l_{33} l_{44} + l_{22} l_{33} l_{44}),\\ u_{10}&=- l_{11} l_{22} l_{33} l_{44} m_{55},\; u_{24}=- h_{11} - h_{22} - h_{44},\\ u_{23}&=h_{11} ( l_{22} + l_{33}+ l_{44}+ l_{55} ) + h_{22} ( l_{11} + l_{33} + l_{44}+ l_{55})\\&\quad + h_{44} ( l_{11} + l_{22}+ l_{33} + l_{55}) - h_{34} l_{43},\\ u_{22}&= - h_{11} ( l_{22} ( l_{44}+ l_{33}+ l_{55})+ l_{33} ( l_{44}+ l_{55}) + l_{44} l_{55}) - h_{22} ( l_{33} (l_{44}+ l_{55})\\&\quad + l_{44} l_{55}+ l_{11} ( l_{33} + l_{44} + l_{55}))\\&\quad - h_{44} ( l_{11} ( l_{22} + l_{33}+ l_{55}) - l_{33} (l_{55} + l_{22} )- l_{22} l_{55}) + h_{34} l_{43} (l_{22} + l_{55} + l_{11}), \\ u_{21}&= h_{11} l_{22} ( l_{33} l_{44} + l_{33} l_{55}+ l_{44}l_{55} )+ l_{33} l_{44} l_{55}(h_{11}+ l_{33} l_{44} l_{55}) \\ {}&\quad + h_{22} l_{11} ( l_{33} l_{44} + l_{33} l_{55}+ l_{44} l_{55})\\&\quad - h_{34} l_{11}l_{43} ( l_{22} - l_{55}) - h_{34} l_{22} l_{43} l_{55}+ h_{44} l_{11} l_{22} ( l_{33} + l_{55} )\\ {}&\quad + h_{44} l_{33} l_{55}(l_{11}+ l_{22} ),\\ u_{20}&= h_{34} l_{11} l_{22} l_{43} l_{55} - h_{22} l_{11} l_{33} l_{44} l_{55} - h_{11} l_{22} l_{33} l_{44} l_{55}- h_{44} l_{11} l_{22} l_{33} l_{55},\\ u_{33}&= h_{11} m_{55} + h_{22} m_{55} - h_{35} m_{53} + h_{44} m_{55},\\ u_{32}&= -h_{11} m_{55}(l_{22} + l_{33} + l_{44} ) - h_{22} m_{55}(l_{11} + l_{33} + l_{44} )+ h_{34} l_{43} m_{55}\\&\quad - h_{44} m_{55}( l_{11}+ h_{44} m_{55}+ l_{33} )+ h_{35} m_{53}(l_{44} + l_{11} + l_{22} ),\\ u_{31}&= h_{11} m_{55} (l_{22} l_{33}+ l_{22} l_{44} + l_{33} l_{44} )+ h_{22}m_{55} (l_{11} l_{33} + l_{11} l_{44} + l_{33} l_{44} )\\&\quad - h_{35}m_{53} (l_{11} l_{22} + l_{11} l_{44} + l_{22} l_{44} )\\&\quad + h_{44} m_{55}(l_{11} l_{22}+ l_{11} l_{33} + l_{22} l_{33} ) - h_{34} l_{43} m_{55}(l_{11} + l_{22}),\\ u_{30}&=- ( l_{33} l_{44} m_{55}(h_{11} l_{22} + h_{22} l_{11} ) - h_{34} l_{11} l_{22} l_{43} m_{55} - h_{35} l_{11} l_{22} l_{44} m_{53}\\ {}&\quad + h_{44} l_{11} l_{22} l_{33} m_{55}),\\ u_{43}&= h_{11} h_{22} + h_{11} h_{44} + h_{22} h_{44},\\ u_{42}&= h_{11} (h_{34} l_{43} - h_{22} ( l_{44}+ l_{55} + l_{33})- h_{44} (l_{22} + l_{33}+ l_{55}))\\&\quad +h_{22}( h_{34} l_{43} - h_{44} ( l_{33}+ l_{11}+ l_{55})),\\ u_{41}&= h_{11} h_{22} l_{44} (l_{33}+ l_{55}) - h_{11} h_{34} l_{43}(l_{22} + l_{55}) + h_{11} l_{33} l_{55} (h_{44} + h_{22}) \\ {}&\quad + h_{11} h_{44} l_{22} ( l_{33}+ l_{55})\\&\quad - h_{22} h_{34} l_{43}(l_{11} + l_{55})+ h_{22} h_{44} l_{11} ( l_{33} + l_{55})+ h_{22} h_{44} l_{33} l_{55},\\ u_{40}&=h_{11} l_{55} ( h_{34} l_{22} l_{43} - h_{22} l_{33} l_{44} ) - h_{11} h_{44} l_{22} l_{33} l_{55} \\ {}&\quad + h_{22} h_{34} l_{11} l_{43} l_{55} - h_{22} h_{44} l_{11} l_{33} l_{55},\\ u_{52}&= -h_{11}(m_{55}(h_{22} + h_{44} )- h_{35} m_{53} ) - m_{53} ( h_{15} h_{31}- h_{35}( h_{22}+ h_{44}) \\&\quad + h_{25} h_{32} + h_{34} h_{45} )- h_{22} h_{44} m_{55},\\ u_{51}&= m_{53}(- h_{11} h_{35}( l_{22} + l_{44})+ h_{15} h_{31} ( l_{22} + l_{44} ) - h_{15} h_{32} l_{21} - h_{22} h_{35}( l_{11} + l_{44}),\\&\quad + h_{25} h_{32} ( l_{11} + l_{44}) + h_{34} h_{45} l_{11} - h_{35} h_{44} ( l_{11} + l_{22}) + h_{34} h_{45} l_{22} )+ m_{55}( h_{11} h_{22} ( l_{33} + l_{44} ), \\&\quad + h_{11} ( h_{44} l_{22} - h_{34} l_{43} + h_{44} l_{33})+ h_{22} (h_{44} l_{11}- h_{34} l_{43} + h_{44} l_{33} ) ),\\ u_{50}&= - h_{11} m_{55} (h_{22} l_{33} l_{44} - h_{34} l_{22} l_{43} + h_{44} l_{22} l_{33} )+ m_{53}(h_{11} h_{35} l_{22} l_{44}\\&\quad + h_{25} h_{32} l_{11} l_{44}- h_{35} h_{44} l_{11} l_{22} )\\&\quad - h_{15} l_{44} m_{53}( h_{31} l_{22}- h_{32} l_{21} ) + h_{22} l_{44} m_{53}(h_{35} l_{11}- h_{44} l_{33})\\&\quad - h_{34} ( h_{45} l_{11} l_{22} m_{53} - h_{22} l_{11} l_{43} m_{55}),\\ u_{62}&=- h_{11} h_{22} h_{44},\; u_{61}= h_{11} h_{22} h_{44} l_{33} - h_{11} h_{22} h_{34} l_{43} + h_{11} h_{22} h_{44} l_{55},\\ u_{60}&= h_{11} h_{22} h_{34} l_{43} l_{55} - h_{11} h_{22} h_{44} l_{33} l_{55},\\ u_{71}&= h_{11} h_{25} h_{32} m_{53} - h_{11} h_{22} h_{35} m_{53} + h_{15} h_{22} h_{31} m_{53} + h_{11} h_{22} h_{44} m_{55} \\ {}&\quad + h_{11} h_{34} h_{45} m_{53}\\&\quad - h_{11} h_{35} h_{44} m_{53} + h_{15} h_{31} h_{44} m_{53} + h_{22} h_{34} h_{45} m_{53} \\ {}&\quad - h_{22} h_{35} h_{44} m_{53} + h_{25} h_{32} h_{44} m_{53},\\ u_{70}&= - h_{11} h_{22} ( h_{44} l_{33} m_{55} - h_{35} l_{44} m_{53}- h_{34} l_{43} m_{55}) - h_{11} m_{53} (h_{25} h_{32} l_{44}\\&\quad + h_{34} h_{45} l_{22}- h_{35} h_{44} l_{22}) \\&\quad - h_{15} m_{53}( h_{22} h_{31} l_{44} + h_{31} h_{44} l_{22} - h_{32} h_{44} l_{21} )\\&\quad - h_{22} l_{11} m_{53}( h_{34} h_{45} - h_{35} h_{44} ) + h_{25} h_{32} h_{44} l_{11} m_{53},\\ u_{80}&=-m_{53} ( h_{11} h_{22} h_{34} h_{45} - h_{11} h_{22} h_{35} h_{44} + h_{11} h_{25} h_{32} h_{44} + h_{15} h_{22} h_{31} h_{44}).\\ p_{04}&=- l_{11} - 2 l_{22} - l_{33} - l_{55},\; p_{03}= 2 l_{11} l_{22} + l_{11} l_{33} + 2 l_{22} l_{33} + l_{11} l_{55} \\&\quad + 2 l_{22} l_{55} + l_{33} l_{55} + l_{22}^2,\\ p_{02}&=- l_{11} l_{22}^2 - l_{22}^2 l_{33} - l_{22}^2 l_{55} - l_{22}^2 m_{55} - 2 l_{11} l_{22} l_{33} - 2 l_{11} l_{22} l_{55} - l_{11} l_{33} l_{55} - 2 l_{22} l_{33} l_{55},\\ p_{01}&= l_{11} l_{22}^2 l_{33} + l_{11} l_{22}^2 l_{55} + l_{22}^2 l_{33} l_{55} + 2 l_{11} l_{22} l_{33} l_{55},\ p_{00}=- l_{11} l_{22}^2 l_{33} l_{55},\\ p_{14}&=- m_{55},\; p_{13}= l_{11} m_{55} + 2 l_{22} m_{55} + l_{33} m_{55},\; p_{12}=- 2 l_{11} l_{22} m_{55} \\&\quad - l_{11} l_{33} m_{55} - 2 l_{22} l_{33} m_{55},\\ p_{11}&= l_{11} l_{22}^2 m_{55} + l_{22}^2 l_{33} m_{55} + 2 l_{11} l_{22} l_{33} m_{55},\; p_{10}=- l_{11} l_{22}^2 l_{33} m_{55},\\ p_{24}&=-h_{11},\; p_{23}=2 h_{11} l_{22} + h_{11} l_{33} + h_{11} l_{55},\; p_{22}=- h_{11} l_{22}^2 - 2 h_{11} l_{22} l_{33} \\&\quad - 2 h_{11} l_{22} l_{55} - h_{11} l_{33} l_{55},\\ p_{21}&=h_{11} l_{22}^2 l_{33} + h_{11} l_{22}^2 l_{55} + 2 h_{11} l_{22} l_{33} l_{55},\; p_{20}=- h_{11} l_{22}^2 l_{33} l_{55},\\ p_{33}&= h_{11} m_{55} + h_{15} m_{53},\; p_{32}=- h_{15} l_{11} m_{53} - 2 h_{11} l_{22} m_{55} - 2 h_{15} l_{22} m_{53} - h_{11} l_{33} m_{55},\\ p_{31}&= h_{11} l_{22}^2 m_{55} + h_{15} l_{22}^2 m_{53} + 2 h_{15} l_{11} l_{22} m_{53} + 2 h_{11} l_{22} l_{33} m_{55},\\ p_{30}&= - h_{15} l_{11} l_{22}^2 m_{53} - h_{11} l_{22}^2 l_{33} m_{55}. \end{aligned}$$

Proofs of Theorems 3.23.7

Proof of Theorem 3.2

When \(R_0\le 1,\) and \(\tau _h=\tau _m=0\), the disease-free equilibrium \(P^0\) is locally asymptotically stable. When \(\tau _h>0,\tau _m>0\), it is obvious that Eq. (3.1) has roots with positive real part if and only if equation

$$\begin{aligned} \lambda ^2+a_1\lambda +a_2(1-R_0^2e^{-\lambda \tau _h}e^{-\lambda \tau _m})=0 \end{aligned}$$
(5.1)

with \(a_1=-(l_{33}+l_{55}),a_2=l_{55}l_{33}\) has roots with positive real part. By substituting \(\lambda =i\kappa \) into Eq. (5.1) and separating the real and imaginary parts, we have

$$\begin{aligned} \begin{array}{l} a_1\kappa =-a_2R_0^2\sin \kappa (\tau _h+\tau _m),\ -\kappa ^2+a_2=a_2R_0^2\cos \kappa (\tau _h+\tau _m). \end{array} \end{aligned}$$
(5.2)

Squaring and taking the sum of Eq. (5.2) yields \( \kappa ^4+(a_1^2-2a_2)\kappa ^2+a_2^2(1-R_0^4)=0, \) with \(a_1^2-2a_2= (l_{33})^2+(l_{55})^2>0\) and \(1-R_0^4>0\) since \(R_0<1\). Hence, all roots of Eq. (3.1) have negative real parts. Here completes the proof. \(\square \)

When \(R_0>1,\) for \(\tau _m=\tau _h=0\), Eq. (3.2) reduced to the following equation

$$\begin{aligned} \lambda ^5+ n_4\lambda ^4+n_3\lambda ^3+n_2\lambda ^2+n_1\lambda +n_0=0 \end{aligned}$$

with \( n_4=\sum _{j=0}^2u_{j4},\ n_3=\sum _{j=0}^4u_{j3},\ n_2=\sum _{j=0}^6u_{j2},\ n_1=\sum _{j=0}^7u_{j1},\ n_0=\sum _{j=0}^8u_{j0}. \) According to the Routh-Hurwitz criteria gives \(Re(\lambda )<0\) if and only if

$$\begin{aligned} \small D_1=n_1>0,\ D_2=\begin{vmatrix} n_1&n_0 \\ n_3&n_2 \end{vmatrix}>0,\ D_3=\begin{vmatrix} n_1&n_0&0 \\ n_3&n_2&n_1\\ 1&n_4&n_3 \end{vmatrix}>0,\ D_4=\begin{vmatrix} n_1&n_0&0&0\\ n_3&n_2&n_1&n_0\\ 1&n_4&n_3&n_2\\ 0&0&1&n_4 \end{vmatrix}>0. \end{aligned}$$

Proof of Theorem 3.3

For \(\tau _h=0\), Eq. (3.2) reduced to the following equation

$$\begin{aligned}{} & {} \lambda ^5+ E_4\lambda ^4+E_3\lambda ^3+E_2\lambda ^2+E_1\lambda +E_0+\left( W_4\lambda ^4+W_3\lambda ^3+W_2\lambda ^2+W_1\lambda +W_0\right) \nonumber \\{} & {} \quad e^{-\lambda \tau _m}=0 \end{aligned}$$
(5.3)

with \( E_4=u_{04}+u_{24},\ E_3=u_{03}+u_{23}+u_{43},\ E_j=u_{0j}+u_{2j}+u_{4j}+u_{6j}\;( j=0,1,2),\ W_4=u_{14},\ W_3=u_{13}+u_{33},\ W_2=u_{12}+u_{32}+u_{52}, W_1=u_{11}+u_{31}+u_{51}+u_{71},\ W_0=u_{10}+u_{30}+u_{50}+u_{70}+u_{80}. \) Suppose that \(\lambda =i\kappa \) is a root of Eq. (5.3), then we have

$$\begin{aligned} \begin{array}{l} b_{11}(\kappa )\sin \kappa \tau _m+b_{12}(\kappa )\cos \kappa \tau _m=b_{13}(\kappa ),\ b_{12}(\kappa )\sin \kappa \tau _m-b_{11}(\kappa )\cos \kappa \tau _m\\ \qquad =b_{23}(\kappa ), \end{array} \end{aligned}$$
(5.4)

where \( b_{11}(\kappa )=W_4\kappa ^4-W_2\kappa ^2+W_0,\ b_{12}(\kappa )=W_3\kappa ^3-W_1\kappa ,\ b_{13}(\kappa )=\kappa ^5-E_3\kappa ^3+E_1\kappa ,\ b_{23}(\kappa )=E_4\kappa ^4-E_2\kappa ^2+E_0, \) which implies

$$\begin{aligned} \kappa ^{10}+c_4\kappa ^8+c_3\kappa ^6+c_2\kappa ^4+c_1\kappa ^2+c_0=0 \end{aligned}$$
(5.5)

with \(c_4=-2E_3+E_4^2-W_4^2,\ c_3=2E_1+E_3^2-2E_4E_2+2W_4W_2-W_3^2,\ c_2=E_2^2-W_2^2-2E_3E_1+2E_4E_0-2W_4W_0+2W_3W_1,\ c_1=E_1^2-2E_0E_2+2W_2W_0-W_1^2,\ c_0=E_0^2-W_0^2. \) For simplicity denote \(\nu =\kappa ^2\), then Eq. (5.5) turns into

$$\begin{aligned} \mathcal {L}(\nu ):=\nu ^{5}+c_4\nu ^4+c_3\nu ^3+c_2\nu ^2+c_1\nu +c_0=0. \end{aligned}$$
(5.6)

If the assumption: \(({\textbf {H}}_1):\) Eq. (5.6) has a positive root \(\nu _0\) is satisfied, then, Eq. (5.5) has a positive root \(\kappa _0=\sqrt{\nu _0}\). Eliminating \(\sin \kappa \tau _m\) in Eq. (5.4) and letting \(\kappa =\kappa _0\), we can obtain that

$$\begin{aligned} \tau _{m}^*=\frac{1}{\kappa _0}\arccos \left( \frac{b_{13}(\kappa _0)b_{12}(\kappa _0)-b_{23}(\kappa _0)b_{11}(\kappa _0)}{b_{12}^2(\kappa _0)+b_{11}^2(\kappa _0)}\right) . \end{aligned}$$

Substituting \(\lambda (\tau _m)\) into Eq. (5.3), taking derivative with respect to \(\tau _m\), we obtain

$$\begin{aligned}{} & {} \left( 5\lambda ^5+\sum _{j=4}^1jE_j\lambda ^{j-1} +(\sum _{j=4}^1jW_j\lambda ^{j-1}-\tau _m\sum _{j=4}^0W_j\lambda ^j)e^{-\lambda \tau _m}\right) \frac{d\lambda }{dt} \\{} & {} \quad =\lambda \sum _{j=4}^0W_j\lambda ^je^{-\lambda \tau _m} \end{aligned}$$

Therefore,

$$\begin{aligned} \left( \frac{d\lambda }{d\tau _m}\right) ^{-1}=\frac{(5\lambda ^4+\sum _{j=4}^1jE_j\lambda ^{j-1})e^{\lambda \tau _m}+\sum _{j=4}^1jW_j\lambda ^{j-1}}{\lambda \sum _{j=4}^0W_j\lambda ^j} -\frac{\tau _m}{\lambda }. \end{aligned}$$

Thus, when \(\lambda =i\kappa _0\), we can get \( \text {Re}\left( \frac{d\lambda }{d\tau _m}\right) ^{-1}_{\lambda =i\kappa _0}=\frac{g^{'}(\nu _0)}{b_{12}^2(\nu _0^2)+b_{11}^2(\nu _0^2)}. \) It can be seen that \(\text {Re}\left( \frac{d\lambda }{d\tau _m}\right) ^{-1}_{\lambda =i\kappa _0}\ne 0\) if the assumption: \(({\textbf {H}}_2): \mathcal {L}^{'}(\nu _0)=\frac{d\mathcal {L}(\nu )}{d\nu }|_{\nu =\nu _0}\ne 0\) is satisfied. Therefore, by the Hopf bifurcation theorem [25], Theorem 3.2 can be obtained if \(({\textbf {H}}_1)\) and \(({\textbf {H}}_2)\) hold. \(\square \)

Proof of Theorem 3.4

For \(\tau _m=0\), Eq. (3.3) reduced to the following equation

$$\begin{aligned}{} & {} \lambda ^5+ F_4\lambda ^4+F_3\lambda ^3+F_2\lambda ^2+F_1\lambda +F_0+\left( X_4\lambda ^4+X_3\lambda ^3+X_2\lambda ^2+X_1\lambda +X_0\right) \nonumber \\{} & {} \quad e^{-\lambda \tau _h}=0 \end{aligned}$$
(5.7)

with \( F_j=p_{0j}+p_{1j}\;(j=0,1,2,3,4),\; X_4=p_{24},\; X_j=p_{2j}+p_{3j}\;(j=0,1,2,3). \)

Suppose that \(\lambda =i\kappa \) is a root of Eq. (5.7), then we have

$$\begin{aligned} \begin{array}{l} d_{11}(\kappa )\sin \kappa \tau _h+d_{12}(\kappa )\cos \kappa \tau _h=d_{13}(\kappa ),\ d_{12}(\kappa )\sin \kappa \tau _h-d_{11}(\kappa )\cos \kappa \tau _h=d_{23}(\kappa ), \end{array}\nonumber \\ \end{aligned}$$
(5.8)

where \( d_{11}(\kappa )=X_4\kappa ^4-X_2\kappa ^2+X_0,\ d_{12}(\kappa )=X_3\kappa ^3-X_1\kappa ,\ d_{13}(\kappa )=\kappa ^5-F_3\kappa ^3+F_1\kappa ,\ d_{23}(\kappa )=F_4\kappa ^4-F_2\kappa ^2+F_0, \) which implies

$$\begin{aligned} \kappa ^{10}+r_4\kappa ^8+r_3\kappa ^6+r_2\kappa ^4+r_1\kappa ^2+r_0=0 \end{aligned}$$
(5.9)

with \( r_4=-2F_3+F_4^2-X_4^2,\ r_3=2F_1+F_3^2-2F_4F_2+2X_4X_2-X_3^2,\ r_2=F_2^2-X_2^2-2F_3F_1+2F_4F_0-2X_4X_0+2X_3X_1,\ r_1=F_1^2-2F_0F_2+2X_2X_0-X_1^2,\ r_0=F_0^2-X_0^2. \) For simplicity denote \(\nu =\kappa ^2\), then Eq. (5.9) turns into

$$\begin{aligned} \mathcal {L}_1(\nu ):=\nu ^{5}+r_4\nu ^4+r_3\nu ^3+r_2\nu ^2+r_1\nu +r_0=0. \end{aligned}$$
(5.10)

If the assumption: \(({\textbf {H}}_3):\) Eq. (5.10) has a positive root \(\nu _1\) is satisfied, then, Eq. (5.9) has a positive root \(\kappa _1=\sqrt{\nu _1}\). Eliminating \(\sin \kappa \tau _h\) in Eq. (5.8) and letting \(\kappa =\kappa _1\), we can obtain that \( \tau _h^*=\frac{1}{\kappa _1}\arccos \left( \frac{d_{13}(\kappa _1)d_{12}(\kappa _1)-d_{23}(\kappa _1)d_{11}(\kappa _1)}{d_{12}^2(\kappa _1)+d_{11}^2(\kappa _1)}\right) . \)

Similar to the proof of Theorem 3.3, differentiating Eq. (5.7) with respect \(\tau _h\) and substituting \(\lambda =i\kappa _1\), we can get \( \text {Re}\left( \frac{d\lambda }{d\tau _h}\right) ^{-1}_{\lambda =i\kappa _1}=\frac{\mathcal {L}_1^{'}(\nu _1)}{d_{12}^2(\nu _1^2)+d_{11}^2(\nu _1^2)}. \) Thus, \(\text {Re}\left( \frac{d\lambda }{d\tau _h}\right) ^{-1}_{\lambda =i\kappa _1}\ne 0\) if the assumption: \(({\textbf {H}}_4): \mathcal {L}_1^{'}(\nu _1)=\frac{d\mathcal {L}_1(\nu )}{d\nu }|_{\nu =\nu _1}\ne 0\) is satisfied. Therefore, by the Hopf bifurcation theorem [25], Theorem 3.4 can be obtained if \(({\textbf {H}}_3)\) and \(({\textbf {H}}_4)\) hold. \(\square \)

Proof of Theorem 3.5

For \(\tau _m=\tau _h=\tau >0\), Eq. (3.3) reduced to the following equation

$$\begin{aligned} \lambda ^5+ \sum _{j=4}^0g_j\lambda ^j+\sum _{j=4}^0y_{1j}\lambda ^je^{-\lambda \tau }+\sum _{j=3}^0y_{2j}\lambda ^je^{-2\lambda \tau }=0 \end{aligned}$$
(5.11)

with \( g_j=p_{0j},\ y_{1j}=p_{1j}+p_{2j},j=0,\cdots ,4,\ y_{2j}=p_{3j},\ j=0,\cdots ,3. \)

Multiplying \(e^{\lambda \tau }\) on both sides of Eq. (5.11), we can get

$$\begin{aligned} \left( \lambda ^5+ \sum _{j=4}^0g_j\lambda ^j\right) e^{\lambda \tau }+\sum _{j=4}^0y_{1j}\lambda ^j+\sum _{j=3}^0y_{2j}\lambda ^je^{-\lambda \tau }=0 \end{aligned}$$
(5.12)

Let \(\lambda =i\kappa \) be a root of Eq. (5.12), then we have \( e_{11}(\kappa )\sin \kappa \tau +e_{12}(\kappa )\cos \kappa \tau =e_{13}(\kappa ),\ e_{21}(\kappa )\sin \kappa \tau +e_{22}(\kappa )\cos \kappa \tau =e_{23}(\kappa ), \) with \( e_{11}(\kappa )=g_4\kappa ^4+(-g_2+y_{22})\kappa ^2+g_0-y_{20},\ e_{12}(\kappa )=\kappa ^5-(g_3+y_{23})\kappa ^3+(g_1+y_{21})\kappa ,\ e_{21}=-\kappa ^5+(g_3-y_{23})\kappa ^3-(g_1-y_{21})\kappa ,\ e_{22}=g_4\kappa ^4-(g_2+y_{22})\kappa ^2+g_0+y_{20},\ e_{13}(\kappa )=y_{13}\kappa ^3-y_{11}\kappa ,\ e_{23}(\kappa )=-y_{14}\kappa ^4+y_{12}\kappa ^2-y_{10}, \) which implies

$$\begin{aligned} \sin \kappa \tau =\frac{e_{13}e_{22}-e_{12}e_{23}}{e_{11}e_{22}-e_{12}e_{21}},\ \cos \kappa \tau =\frac{e_{11}e_{23}-e_{13}e_{21}}{e_{11}e_{22}-e_{12}e_{21}}. \end{aligned}$$
(5.13)

Consequently, the following equation with respect to \(\kappa \) is obtained

$$\begin{aligned} \kappa ^{20}+\sum _{j=9}^0s_j\kappa ^{2j}=0 \end{aligned}$$
(5.14)

with

$$\begin{aligned} s_9&= - 2g_4^2 - y_{14}^2 - 4g_3 ,\ s_8= 4g_1 + 2g_4(g_2 - y_{22}) + (g_4^2 + 2g_3)^2 - (y_{13} \\&\quad - g_4y_{14})^2 + 2y_{14}(y_{12} + g_4y_{13}\\&\quad + y_{14}(g_3 + y_{23})),+ 2g_4(g_2 + y_{22}) + 2(g_3 + y_{23})(g_3 - y_{23}),\\ s_7&= 2(y_{13} - g_4y_{14})(y_{11} - g_4y_{12} - y_{14}(g_2 - y_{22}) + y_{13}(g_3 - y_{23})) - 2g_4(g_0 - y_{20})\\&\quad - 2(g_4^2 + 2g_3)(2g_1 + g_4(g_2 - y_{22}) + g_4(g_2 + y_{22}) + (g_3 + y_{23})(g_3 - y_{23}))\\&\quad - 2y_{14}(y_{10} + g_4y_{11} + y_{14}(g_1 + y_{21}) + y_{13}(g_2 + y_{22}) + y_{12}(g_3 + y_{23})) \\&\quad - 2g_4(g_0 + y_{20}) - 2(g_1 + y_{21})(g_3 - y_{23}) - 2(g_2 + y_{22})(g_2 - y_{22})\\&\quad - 2(g_3 + y_{23})(g_1 - y_{21}) - (y_{12} + g_4y_{13} + y_{14}(g_3 + y_{23}))^2 ,\\ s_6&= 2(g_4^2 + 2g_3)(g_4(g_0 - y_{20}) + g_4(g_0 + y_{20}) + (g_1 + y_{21})(g_3 - y_{23})+ (g_2 + y_{22})(g_2 - y_{22}) ,\\&\quad + (g_3 + y_{23})(g_1 - y_{21})) - (y_{11} - g_4y_{12} - y_{14}(g_2 - y_{22})+ y_{13}(g_3 - y_{23}))^2\\&\quad + 2(y_{12} + g_4y_{13} + y_{14}(g_3 + y_{23}))(y_{10} + g_4y_{11} + y_{14}(g_1 + y_{21})\\&\quad + y_{13}(g_2 + y_{22}) + y_{12}(g_3 + y_{23})) + 2(g_0 + y_{20})(g_2 - y_{22}) + 2(g_1 + y_{21})(g_1 - y_{21})\\&\quad + 2(g_2 + y_{22})(g_0 - y_{20}) + (2g_1 + g_4(g_2 - y_{22}) + g_4(g_2 + y_{22}) + (g_3 + y_{23})(g_3 - y_{23}))^2 \\&\quad + 2(y_{13} - g_4y_{14})(g_4y_{10} + y_{14}(g_0 - y_{20}) - y_{13}(g_1 - y_{21}) + y_{12}(g_2 - y_{22}) - y_{11}(g_3 - y_{23}))\\&\quad + 2y_{14}(y_{13}(g_0 + y_{20}) + y_{12}(g_1 + y_{21}) + y_{11}(g_2 + y_{22}) + y_{10}(g_3 + y_{23})),\\ s_5&=- 2(y_{11} - g_4y_{12} - y_{14}(g_2 - y_{22}) + y_{13}(g_3 - y_{23}))(g_4y_{10} + y_{14}(g_0 - y_{20})\\&\quad - y_{13}(g_1 - y_{21}) + y_{12}(g_2 - y_{22}) - y_{11}(g_3 - y_{23})) \\&\quad - 2(y_{12} + g_4y_{13} + y_{14}(g_3 + y_{23}))(y_{13}(g_0 + y_{20}) \\&\quad + y_{12}(g_1 + y_{21}) + y_{11}(g_2 + y_{22}) + y_{10}(g_3 + y_{23})) \\&\quad - 2(2g_1 + g_4(g_2 - y_{22}) + g_4(g_2 + y_{22})\\&\quad + (g_3 + y_{23})(g_3 - y_{23}))(g_4(g_0 - y_{20}) + g_4(g_0 + y_{20}) + (g_1 + y_{21})(g_3 - y_{23})\\&\quad + (g_2 + y_{22})(g_2 - y_{22}) + (g_3 + y_{23})(g_1 - y_{21})) - (y_{10} + g_4y_{11} \\&\quad + y_{14}(g_1 + y_{21}) + y_{13}(g_2 + y_{22})\\&\quad + y_{12}(g_3 + y_{23}))^2- 2y_{14}(y_{11}(g_0 + y_{20}) + y_{10}(g_1 + y_{21})) \\&\quad - 2(g_4^2 + 2g_3)((g_0 + y_{20})(g_2 - y_{22}) \\&\quad + (g_1 + y_{21})(g_1 - y_{21})+ (g_2 + y_{22})(g_0 - y_{20})) - 2(g_0 + y_{20})(g_0 - y_{20}) \\&\quad - 2(y_{13} - g_4y_{14})(y_{12}(g_0 - y_{20}) - y_{11}(g_1 - y_{21}) + y_{10}(g_2 - y_{22})), \end{aligned}$$
$$\begin{aligned} s_4&=2((g_0 + y_{20})(g_2 - y_{22}) + (g_1 + y_{21})(g_1 - y_{21}) \\&\quad + (g_2 + y_{22})(g_0 - y_{20}))(2g_1 + g_4(g_2 - y_{22})\\&\quad + g_4(g_2 + y_{22}) + (g_3 + y_{23})(g_3 - y_{23})) - (g_4y_{10} + y_{14}(g_0 - y_{20}) \\&\quad - y_{13}(g_1 - y_{21}) + y_{12}(g_2 - y_{22}) ,\\&\quad - y_{11}(g_3 - y_{23}))^2 + 2(y_{13}(g_0 + y_{20}) + y_{12}(g_1 + y_{21}) \\&\quad + y_{11}(g_2 + y_{22}) + y_{10}(g_3 + y_{23}))(y_{10} \\&\quad + g_4y_{11} + y_{14}(g_1 + y_{21})+ y_{13}(g_2 + y_{22}) + y_{12}(g_3 + y_{23}))\\&\quad + 2(y_{11}(g_0 + y_{20}) + y_{10}(g_1 + y_{21}))(y_{12} \\&\quad + g_4y_{13} + y_{14}(g_3 + y_{23}))+ (g_4(g_0 - y_{20}) + g_4(g_0 + y_{20}) + (g_1 + y_{21})(g_3 - y_{23})\\&\quad + (g_2 + y_{22})(g_2 - y_{22})+ (g_3 + y_{23})(g_1 - y_{21}))^2+ 2(y_{12}(g_0 - y_{20}) - y_{11}(g_1 - y_{21}) \\&\quad + y_{10}(g_2 - y_{22}))(y_{11} - g_4y_{12} - y_{14}(g_2 - y_{22}) + y_{13}(g_3 - y_{23}))\\&\quad + 2(g_0 + y_{20})(g_0 - y_{20})(g_4^2 + 2g_3)\\&\quad + 2y_{10}(g_0 - y_{20})(y_{13} - g_4y_{14}),\\ s_3&= 2(y_{12}(g_0 - y_{20}) - y_{11}(g_1 - y_{21}) + y_{10}(g_2 - y_{22}))(g_4y_{10} + y_{14}(g_0 - y_{20}) - y_{13}(g_1 - y_{21})\\&\quad + y_{12}(g_2 - y_{22}) - y_{11}(g_3 - y_{23})) - 2((g_0 + y_{20})(g_2 - y_{22}) + (g_1 + y_{21})(g_1 - y_{21}) \\&\quad + (g_2 + y_{22})(g_0 - y_{20}))(g_4(g_0 - y_{20}) + g_4(g_0 + y_{20}) + (g_1 + y_{21})(g_3 - y_{23})\\&\quad + (g_2 + y_{22})(g_2 - y_{22}) + (g_3 + y_{23})(g_1 - y_{21})) - (y_{13}(g_0 + y_{20}) + y_{12}(g_1 + y_{21})\\&\quad + y_{11}(g_2 + y_{22}) + y_{10}(g_3 + y_{23}))^2 - 2(y_{11}(g_0 + y_{20}) \\&\quad + y_{10}(g_1 + y_{21}))(y_{10} + g_4y_{11} + y_{14}(g_1 + y_{21})\\&\quad + y_{13}(g_2 + y_{22}) + y_{12}(g_3 + y_{23})) - 2y_{10}(g_0 - y_{20})(y_{11} - g_4y_{12} \\&\quad - y_{14}(g_2 - y_{22}) + y_{13}(g_3 - y_{23})) \\&\quad - 2(g_0 + y_{20})(g_0 - y_{20})(2g_1 + g_4(g_2 - y_{22}) + g_4(g_2 + y_{22}) + (g_3 + y_{23})(g_3 - y_{23})),\\ s_2&= 2(y_{11}(g_0 + y_{20}) + y_{10}(g_1 + y_{21}))(y_{13}(g_0 + y_{20}) + y_{12}(g_1 + y_{21}) + y_{11}(g_2 + y_{22})\\&\quad + y_{10}(g_3 + y_{23})) - (y_{12}(g_0 - y_{20}) - y_{11}(g_1 - y_{21}) \\&\quad + y_{10}(g_2 - y_{22}))^2 + ((g_0 + y_{20})(g_2 - y_{22}) \\&\quad + (g_1 + y_{21})(g_1 - y_{21}) + (g_2 + y_{22})(g_0 - y_{20}))^2 + 2(g_0 + y_{20})(g_0 - y_{20})(g_4(g_0 - y_{20}) \\&\quad + g_4(g_0 + y_{20})+ (g_1 + y_{21})(g_3 - y_{23}) + (g_2 + y_{22})(g_2 - y_{22}) + (g_3 + y_{23})(g_1 - y_{21})) \\&\quad -2y_{10}(g_0 - y_{20})(g_4y_{10} + y_{14}(g_0 - y_{20}) - y_{13}(g_1 - y_{21}) \\&\quad + y_{12}(g_2 - y_{22}) - y_{11}(g_3 - y_{23})),\\ s_1&=2y_{10}(g_0 - y_{20})(y_{12}(g_0 - y_{20}) - y_{11}(g_1 - y_{21}) + y_{10}(g_2 - y_{22})) \\&\quad - 2(g_0 + y_{20})(g_0 - y_{20})((g_0 + y_{20})(g_2 - y_{22})+ (g_1 + y_{21})(g_1 - y_{21}) \\&\quad + (g_2 + y_{22})(g_0 - y_{20})) \\&\quad - (y_{11}(g_0 + y_{20}) + y_{10}(g_1 + y_{21}))^2,\ s_0=(g_0 + y_{20})^2(g_0 - y_{20})^2 - y_{10}^2(g_0 - y_{20})^2. \end{aligned}$$

For simplicity denote \(\nu =\kappa ^2\), then Eq. (5.14) turns into

$$\begin{aligned} g(\nu ):=\nu ^{10}+\sum _{j=9}^0s_j\nu ^{j}=0. \end{aligned}$$
(5.15)

If the assumption: \(({\textbf {H}}_5):\) Eq. (5.15) has a positive root \(\nu _2\) is satisfied. then Eq. (5.14) has a positive root \(\kappa _2=\sqrt{\nu _2}\). Letting \(\kappa =\kappa _2\) in Eq. (5.13), we can obtain that

$$\begin{aligned} \tau ^*=\frac{1}{\kappa _2}\arccos \left( \frac{e_{13}(\kappa _2)e_{21}(\kappa _2)-e_{11}(\kappa _2)e_{23}(\kappa _2)}{e_{11}(\kappa _2)e_{22}(\kappa _2)-e_{12}(\kappa _2)e_{21}(\kappa _2)}\right) . \end{aligned}$$

Similar to the proof of Theorem 3.3, differentiating Eq. (5.11) with respect \(\tau \) and substituting \(\lambda =i\kappa _2\), we can get

$$\begin{aligned} \text {Re}\left( \frac{d\lambda }{d\tau }\right) ^{-1}_{\lambda =i\kappa _2}=\frac{e_2e_3-e_1e_4}{\kappa _2(e_3^2+e_4^2)}, \end{aligned}$$

where \( e_1=-3y_{13}\kappa _2^3+y_{11}+(5\kappa _2^4-3g_3\kappa _2^2+g_1-3y_{23}\kappa _2^2+y_{21})\cos \kappa _2\tau ^*\ +(2y_{22}\kappa _2+4g_4\kappa _2^3-2g_2\kappa _2)\sin \kappa _2\tau ^*,\ e_2=-4y_{14}\kappa _2^3+2y_{12}\kappa _2+(5\kappa _2^4-3g_3\kappa _2^2+g_1+3y_{23}\kappa _2^2-y_{21})\sin \kappa _2\tau ^*\ +(2y_{22}\kappa _2-4g_4\kappa _2^3+2g_2\kappa _2)\sin \kappa _2\tau ^*,\ e_3=e_{11}(\kappa _2)\cos \kappa _2\tau ^*-e_{21}(\kappa _2)\sin \kappa _2\tau ^*,\;e_4=e_{12}(\kappa _2)\cos \kappa _2\tau ^*+e_{22}(\kappa _2)\sin \kappa _2\tau ^*. \) Therefore, \(\text {Re}\left( \frac{d\lambda }{d\tau }\right) ^{-1}_{\lambda =i\kappa _2}\ne 0\) if the assumption: \(({\textbf {H}}_6): e_2e_3-e_1e_4\ne 0\) is satisfied. Consequently, by the Hopf bifurcation theorem [25], Theorem 3.4 can be obtained if \(({\textbf {H}}_5)\) and \(({\textbf {H}}_6)\) hold. \(\square \)

Proof of Theorem 3.6

For \(\tau _m>0\) and \(\tau _h\in (0,\tau _h^*)\), Eq. (3.3) can be written as

$$\begin{aligned} \begin{array}{lll} \displaystyle \lambda ^5 +\sum _{j=4}^0\left( p_{ 0j}+p_{ 2j}e^{-\lambda \tau _h}\right) \lambda ^j +\left( p_{14}\lambda ^4+\sum _{j=3}^0\left( p_{ 1j}+p_{ 3j}e^{-\lambda \tau _h}\right) \lambda ^j\right) e^{-\lambda \tau _m}=0. \end{array} \end{aligned}$$

Considering \(\tau _h\) as a parameter and letting \(\lambda =i\kappa \), we can obtain

$$\begin{aligned} \begin{array}{l} f_{11}(\kappa )\sin \kappa \tau _m+f_{12}(\kappa )\cos \kappa \tau _m=f_{13}(\kappa ),\ f_{12}(\kappa )\sin \kappa \tau _m-f_{11}(\kappa )\cos \kappa \tau _m=f_{23}(\kappa ), \end{array} \end{aligned}$$

with \( f_{11}(\kappa )= -p_{13}\kappa ^3+p_{11}\kappa -(p_{33}\kappa ^3-p_{31}\kappa )\cos \kappa \tau _h-(-p_{32}\kappa ^2+p_{30})\sin \kappa \tau _h,\ \) \(f_{12}(\kappa )= p_{14}\kappa ^4-p_{12}\kappa ^2+p_{10}-(p_{33}\kappa ^3-p_{31}\kappa )\sin \kappa \tau _h+(-p_{32}\kappa ^2+p_{30})\cos \kappa \tau _h,\ f_{13}(\kappa )= -(p_{04}\kappa ^4-p_{02}\kappa ^2+p_{00})+(p_{23}\kappa ^3-p_{21}\kappa )\sin \kappa \tau _h-(p_{24}\kappa ^4-p_{22}\kappa ^2+p_{20})\cos \kappa \tau _h,\ f_{23}(\kappa )= (\kappa ^5-p_{03}\kappa ^3+p_{01}\kappa )-(p_{23}\kappa ^3-p_{21}\kappa )\cos \kappa \tau _h-(p_{24}\kappa ^4-p_{22}\kappa ^2+p_{20})\sin \kappa \tau _h, \) which implies

$$\begin{aligned} \kappa ^{10}+\sum _{i=4}^0q_{0j}\kappa ^{2j}+\left( \sum _{i=4}^0q_{1j}\kappa ^{2j}\right) \cos \kappa \tau _h+\left( \sum _{i=4}^0q_{2j}\kappa ^{2j}\right) \kappa \sin \kappa \tau _h=0\nonumber \\ \end{aligned}$$
(5.16)

with

$$\begin{aligned} q_{04}&= p_{04}^2 - p_{14}^2 + p_{24}^2 - 2p_{03},\ q_{03}=p_{03}^2 - p_{13}^2 + p_{23}^2 - p_{33}^2 + 2p_{01} \\&\quad - 2p_{02}p_{04} + 2p_{12}p_{14} - 2p_{22}p_{24},\\ q_{02}&=p_{02}^2 - p_{12}^2 + p_{22}^2 - p_{32}^2 + 2(p_{00}p_{04} - p_{01}p_{03} - p_{10}p_{14} + p_{11}p_{13} \\&\quad + p_{20}p_{24} - p_{21}p_{23} + p_{31}p_{33}),\\ q_{01}&= p_{01}^2 - p_{11}^2 + p_{21}^2 -p_{31}^2 - 2p_{00}p_{02} + 2p_{10}p_{12} - 2p_{20}p_{22} + 2p_{30}p_{32},\\ q_{00}&= p_{00}^2 - p_{10}^2 + p_{20}^2 - p_{30}^2,\ q_{14}=2p_{04}p_{24} - 2p_{23},\\ q_{13}&=2p_{21} - 2p_{02}p_{24} + 2p_{03}p_{23} - 2p_{04}p_{22} - 2p_{13}p_{33} + 2p_{14}p_{32},\\ q_{12}&=2p_{00}p_{24} - 2p_{01}p_{23} + 2p_{02}p_{22} - 2p_{03}p_{21} + 2p_{04}p_{20} + 2p_{11}p_{33} \\&\quad - 2p_{12}p_{32} + 2p_{13}p_{31} - 2p_{14}p_{30},\\ q_{11}&= 2(p_{01}p_{21} - p_{00}p_{22} - p_{02}p_{20} + p_{10}p_{32} - p_{11}p_{31} + p_{12}p_{30}),\\ q_{10}&= 2p_{00}p_{20} - 2p_{10}p_{30},\ q_{24}= - 2p_{24},\ q_{23}= 2p_{22} + 2p_{03}p_{24} - 2p_{04}p_{23} + 2p_{14}p_{33},\\ q_{22}&= 2p_{02}p_{23} - 2p_{01}p_{24} - 2p_{20} - 2p_{03}p_{22} + 2p_{04}p_{21} - 2p_{12}p_{33} + 2p_{13}p_{32} - 2p_{14}p_{31},\\ q_{21}&=2p_{01}p_{22} - 2p_{00}p_{23} - 2p_{02}p_{21} + 2p_{03}p_{20} + 2p_{10}p_{33} - 2p_{11}p_{32} + 2p_{12}p_{31} - 2p_{13}p_{30},\\ q_{20}&= 2p_{00}p_{21} - 2p_{01}p_{20} - 2p_{10}p_{31} + 2p_{11}p_{30}. \end{aligned}$$

If the assumption: \(({\textbf {H}}_7):\) Eq. (5.16) has a positive root \(\hat{\kappa }\) is satisfied, then, from Eq. (5.8) we can obtain that \( \hat{\tau }_m =\frac{1}{\hat{\kappa }}\arccos \left( \frac{f_{13}(\hat{\kappa })f_{12}(\hat{\kappa })-f_{23}(\hat{\kappa })f_{11}(\hat{\kappa })}{f_{12}^2(\hat{\kappa })+f_{11}^2(\hat{\kappa })}\right) . \)

Similar to the proof of Theorem 3.3, differentiating Eq. (5.7) with respect \(\tau _m\) and substituting \(\lambda =i\hat{\kappa }\), we can get \( \text {Re}\left( \frac{d\lambda }{d\tau _m}\right) ^{-1}_{\lambda =i\hat{\kappa }}=\frac{q_1q_4-q_2q_3}{\hat{\kappa }(q_1^2+q_2^2)},\) where \( q_1=(p_{14}\hat{\kappa }^4-p_{12}\hat{\kappa }^2+p_{10}+p_{30}-p_{32}\hat{\kappa }^2)\cos \hat{\kappa }\hat{\tau }_m+(p_{11}\hat{\kappa }-p_{13}\hat{\kappa }^3 + p_{33}\hat{\kappa }^3-p_{31}\hat{\kappa })\sin \hat{\kappa }\hat{\tau }_m,\ q_2=-(p_{14}\hat{\kappa }^4-p_{12}\hat{\kappa }^2+p_{10}+p_{30}-p_{32}\hat{\kappa }^2)\sin \hat{\kappa }\hat{\tau }_m+(p_{11}\hat{\kappa }-p_{13}\hat{\kappa }^3 +p_{33}\hat{\kappa }^3-p_{31}\hat{\kappa })\cos \hat{\kappa }\hat{\tau }_m,\ q_3=5\hat{\kappa }^4-3p_{03}\hat{\kappa }^2+p_{01}+(p_{21}-3p_{23}\hat{\kappa }^2-\tau _h((p_{24}\hat{\kappa }^4-p_{22}\hat{\kappa }^2+p_{20})))\cos \hat{\kappa }\tau _h +(2p_{22}\hat{\kappa }-4p_{24}\hat{\kappa }^3-\tau _h(p_{23}\hat{\kappa }^3-p_{21}\hat{\kappa }))\sin \hat{\kappa }\tau _h +(p_{11}-3p_{13}\hat{\kappa }^2)\cos \hat{\kappa }\hat{\tau }_m +(2p_{12}\hat{\kappa }-4p_{14}\hat{\kappa }^3)\sin \hat{\kappa }\hat{\tau }_m +(p_{31}-3p_{33}\hat{\kappa }^2-\tau _h(-p_{32}\hat{\kappa }^2+p_{30}))\cos \hat{\kappa }(\tau _h+\hat{\tau }_m) +(2p_{32}\hat{\kappa }-\tau _h(p_{31}\hat{\kappa }-p_{33}\hat{\kappa }^3))\sin \hat{\kappa }(\tau _h+\hat{\tau }_m),\ q_4=-4p_{04}\hat{\kappa }^3+2p_{02}\hat{\kappa }+(3p_{23}\hat{\kappa }^2-p_{21}+\tau _h(p_{24}\hat{\kappa }^4-p_{22}\hat{\kappa }^2+p_{20}))\sin \hat{\kappa }\tau _h +(2p_{22}\hat{\kappa }-4p_{24}\hat{\kappa }^3-\tau _h(p_{23}\hat{\kappa }^3-p_{21}\hat{\kappa }))\cos \hat{\kappa }\tau _h +(3p_{13}\hat{\kappa }^2-p_{11})\sin \hat{\kappa }\hat{\tau }_m\)

\(+(2p_{12}\hat{\kappa }-4p_{14}\hat{\kappa }^3)\cos \hat{\kappa }\hat{\tau }_m +(3p_{33}\hat{\kappa }^2-p_{31}+\tau _h(p_{30}-p_{32}\hat{\kappa }^2))\sin \hat{\kappa }(\tau _h+\hat{\tau }_m) +(2p_{32}\hat{\kappa }-\tau _h(p_{31}\hat{\kappa }-p_{33}\hat{\kappa }^3))\cos \hat{\kappa }(\tau _h+\hat{\tau }_m). \) Thus, \(\text {Re}\left( \frac{d\lambda }{d\tau _m}\right) ^{-1}_{\lambda =i\hat{\kappa }}\ne 0\) if the assumption: \(({\textbf {H}}_8): q_1q_4-q_2q_3\ne 0\) is satisfied. Therefore, by the Hopf bifurcation theorem [25], Theorem 3.4 can be obtained if \(({\textbf {H}}_7)\) and \(({\textbf {H}}_8)\) hold. \(\square \)

Proof of Theorem 3.7

Define \(C= C([-1,0],\mathbb {R}^5)\) the space of continuous real valued functions. Let \(\tau _m=\hat{\tau }_m+\varrho \) and make time-scaling \(t\rightarrow t/{\hat{\tau }_m}\). Let \(x_1(t)=S_h(t)-S_h^*\), \(x_2(t)=V(t)-V^*\), \(x_3(t)=I_h(t)-I_h^*\), \(x_4(t)=R_h(t)-R_h^*\), \(x_5(t)=I_m(t)-I_m^*\), then model (1.2) is transformed into

$$\begin{aligned} \frac{dx(t)}{dt}=L_{ \varrho }(x_t)+F(\varrho ,x_t), \end{aligned}$$
(5.17)

where \(x(t)=(x_1(t),x_2(t),x_3(t),x_4(t),x_5(t))^T\in \mathbb {R}^5\) and \(x_t(\theta )=x(t+\theta )\in C([-1,0],\mathbb {R}^5)\). In (5.17), \(L_{\varrho }: C \rightarrow \mathbb {R}^5\) and \(F:\mathbb { R}\times C \rightarrow \mathbb {R}^5\) are given by

$$\begin{aligned} L_{\varrho }(\varphi )= (\hat{\tau }_m+\varrho )\left( A^{'}\varphi (0)+C^{'}\varphi (-\frac{\tau _h^*}{\hat{\tau }_m})+B^{'}\varphi (-1)\right) , \end{aligned}$$

where

$$\begin{aligned} \small A^{'}= \begin{pmatrix} a_{11} &{} 0 &{} 0 &{} 0 &{} 0\\ a_{21} &{} a_{22} &{} 0 &{} 0 &{}0\\ 0 &{} 0 &{} a_{33} &{} 0 &{} 0\\ 0 &{} 0 &{} a_{43} &{} a_{22} &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} a_{55} \end{pmatrix},B^{'}= \begin{pmatrix} b_{11} &{} 0 &{} 0 &{} 0 &{} b_{15}\\ 0 &{} 0 &{} 0 &{} 0 &{}0\\ b_{31} &{} 0 &{} 0 &{} 0 &{} b_{35}\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{pmatrix}, C^{'}= \begin{pmatrix} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} c_{53} &{} 0 &{} c_{55} \end{pmatrix}. \end{aligned}$$

with \( a_{11}=-\mu _h-\eta ,\ a_{21}=\eta ,\ a_{22}=-\mu _h,\ a_{33}=-(\mu _h+\alpha +\gamma ),\ a_{43}=\gamma ,\ \ a_{55}=-\mu _m,\ b_{11}=-\beta _h I_m^*,\ b_{15}=-\beta _h S_h^*,\ b_{31}=\beta _h I_m^*,\ b_{35}=\beta _hS_h^*,\ c_{53}=\beta _m (\frac{b_m}{\mu _m}-I_m^*),\ c_{55}=-\beta _m I_h^*, \) and

$$\begin{aligned} \small F= \begin{pmatrix} \displaystyle -\beta _hx_1(-\frac{\tau _h^*}{\hat{\tau }_m})x_5(-\frac{\tau _h^*}{\hat{\tau }_m}) \\ \displaystyle 0 \\ \displaystyle \beta _hx_1(-\frac{\tau _h^*}{\hat{\tau }_m})x_5(-\frac{\tau _h^*}{\hat{\tau }_m})\\ \displaystyle 0\\ \displaystyle -\beta _mx_3(-1)x_5(-1) \end{pmatrix}. \end{aligned}$$

According to the Riesz representation theorem, there exists a bounded variation function \(\zeta (\theta ,\mu )\) in \(\theta \in [-1,0]\) such that \( \small L_{\varrho }(\varphi )=\int _{-1}^0d\zeta (\theta ,\varrho )\varphi (\theta ),\quad \varphi \in C. \) We select

$$\begin{aligned} \zeta (\theta ,\varrho )= {\left\{ \begin{array}{ll} \displaystyle (\hat{\tau }_m+\varrho )(A^{'}+B^{'}+C^{'}) ,&{}\theta =0, \\ \displaystyle (\hat{\tau }_m+\varrho )(B^{'}+C^{'}) ,&{}\theta \in [-\frac{\hat{\tau }_m}{\tau _h^*},0),\\ \displaystyle (\hat{\tau }_m+\varrho )B^{'} ,&{}\theta \in (-1,-\frac{\hat{\tau }_m}{\tau _h^*}),\\ \displaystyle 0 ,&{}\theta =-1,\\ \end{array}\right. } \end{aligned}$$

For \(\varphi \in C\), define

$$\begin{aligned} \small A(\varrho )\varphi = {\left\{ \begin{array}{ll} \displaystyle \frac{d{\varphi }(\theta )}{d\theta } ,&{}\theta \in [-1,0), \\ \displaystyle \int _{-1}^0d\zeta (\varrho ,\theta )\varphi (\theta ) ,&{}\theta =0, \end{array}\right. } \end{aligned}$$
(5.18)

and \( \small R(\mu )\varphi = {\left\{ \begin{array}{ll} 0,&{} \theta \in [-1,0) \\ F(\varrho ,\varphi ),&{} \theta =0 \end{array}\right. }. \) Then model (5.17) is equivalent to

$$\begin{aligned} \small \frac{dx_t}{dt}=A(\varrho )x_t+R(\varrho )x_t, \end{aligned}$$
(5.19)

where \(x_t=u(t+\theta )\) for \(\theta \in [-1,0]\).

For \(\psi \in C^1([0,1],(\mathbb {R}^5)^*)\), being the conjugated space of \(C^1([0,1],\mathbb {R}^5)\), define

$$\begin{aligned} \small A^*\psi (s)= {\left\{ \begin{array}{ll} \displaystyle -\frac{d{\psi }(s)}{ds},&{} s\in (0,1], \\ \displaystyle \int _{-1}^0d\zeta ^T(t,0)\psi (-t),&{} s=0, \end{array}\right. } \end{aligned}$$

and the bilinear inner product

$$\begin{aligned} \langle \psi ,\varphi \rangle =\bar{\psi }(0)\varphi (0) -\int _{-1}^0\int _{\xi =0}^{\theta }\bar{\psi }(\xi -\theta )d\zeta (\theta )\varphi (\xi )d\xi , \end{aligned}$$
(5.20)

where \(\zeta (\theta )=\zeta (\theta ,0)\). From the discussion in Sect. 4, we know that \(\pm i\hat{\kappa }\hat{\tau }_m\) are eigenvalues of A(0). Thus, \(\pm i\hat{\kappa }\hat{\tau }_m\) are also eigenvalues of \(A^*(0)\). We will calculate the eigenvectors of A(0) and \(A^*(0)\) with respond to \(\pm i\hat{\kappa }\hat{\tau }_m\).

Assume \(q(\theta )=(1,q_2,q_3,q_4,q_5)^Te^{i\hat{\kappa }\hat{\tau }_m\theta }\) is the eigenvector of A(0) corresponding to \(i\hat{\kappa }\), namely, \(A(0)q(\theta )=i\hat{\kappa }\hat{\tau }_m q(\theta )\) and let \(q^*(s)=D(1,q_1^*,q_2^*,q_3^*,q_4^*)^T e^{i\hat{\kappa }\hat{\tau }_ms }\) is the eigenvector corresponding to \(-i\hat{\kappa }\), then we have

$$\begin{aligned} \begin{aligned} q_1&=\frac{a_{21}+b_{25}e^{-i\hat{\kappa }\tau _h^*}q_4}{i\hat{\kappa }-a_{22}},\ q_2=\frac{(i\hat{\kappa }-c_{55}e^{-i\hat{\kappa }\hat{\tau }_m})q_4}{c_{53}e^{-i\hat{\kappa }\hat{\tau }_m}},\\ q_3&=\frac{a_{43}(i\hat{\kappa }-c_{55}e^{-i\hat{\kappa }\hat{\tau }_m})}{c_{53}e^{-i\hat{\kappa }\hat{\tau }_m}}q_4,\ q_4=\frac{b_{15}e^{-i\hat{\kappa }\tau _h^*}}{i\hat{\kappa }-a_{11}-b_{11}e^{-i\hat{\kappa }\tau _h^*}},\\ q_1^*&=0,\ q_2^*=\frac{-i\hat{\kappa }-a_{11}-b_{11}e^{-i\hat{\kappa }\tau _h^*} }{b_{31}e^{-i\hat{\kappa }\tau _h^*}},\ q_3^*=0,\\ q_4^*&=\frac{(-i\hat{\kappa }-a_{33})(-i\hat{\kappa }-a_{11}-b_{11}e^{-i\hat{\kappa }\tau _h^*}) }{c_{53}b_{31}e^{-i\hat{\kappa }(\tau _h^*+\hat{\tau }_m)}}, \end{aligned} \end{aligned}$$

where D is a constant satisfying \(\langle q^*(s),q(\theta )\rangle =1\). By (5.20), we get

$$\begin{aligned} \begin{aligned} \displaystyle&\langle q^*(s),q(\theta )\rangle \\ \displaystyle&={\bar{D}}(1+q_2{\bar{q}}_2^*+q_4\bar{q}_4^*+\tau _h^*e^{-i\hat{\kappa }\tau _h^*}(b_{11}+b_{31}q_2^*+q_1b_{32}q_2^* +q_4(b_{15}+b_{35}q_2^*))\\&\quad +\hat{\tau }_me^{-i\hat{\kappa }\hat{\tau }_h}q_4^*(c_{53}q_2+c_{55}q_4)) \end{aligned} \end{aligned}$$

Therefore, we can choose

$$\begin{aligned} {\bar{D}}{} & {} =(1+q_2{\bar{q}}_2^*+q_4\bar{q}_4^*+\tau _h^*e^{-i\hat{\kappa }\tau _h^*}(b_{11}+b_{31}q_2^*+q_1b_{32}q_2^* +q_4(b_{15}+b_{35}q_2^*)) \\ {}{} & {} \quad +\hat{\tau }_me^{-i\hat{\kappa }\hat{\tau }_h}q_4^*(c_{53}q_2+c_{55}q_4))^{-1} \end{aligned}$$

such that \(\langle q^*,q \rangle =1\) and \(\langle q^*,{\bar{q}} \rangle =0\).

To compute the center manifold \(C_0\) at \(\varrho =0\). Define

$$\begin{aligned} z(t)=\langle q^*, x_t \rangle ,\quad W(t,\theta )=x_t(\theta )-z(t)q(\theta )-{\bar{z}}(t){\bar{q}}(\theta ). \end{aligned}$$
(5.21)

On \(C_0\), we have

$$\begin{aligned} W(t,\theta )=W(z,\bar{z},\theta )=W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z}+W_{02}(\theta )\frac{{\bar{z}}^2}{2}+\cdots . \end{aligned}$$
(5.22)

Note that W is real if \(x_t\) is real, so we deal the real solutions only. For solution \(x_t\in C_0\) with \(\zeta =0\), we have

$$\begin{aligned} \begin{aligned} \displaystyle \frac{dz(t)}{dt}&= i\omega z+{\bar{q}}^*(0)f(0,W(z(t),\bar{z}(t),0))+z(t)q(\theta )+{\bar{z}}(t){\bar{q}}(\theta )) \triangleq i\omega z\\&\quad +{\bar{q}}^*(0) f_0(z,{\bar{z}}). \end{aligned}\qquad \end{aligned}$$
(5.23)

Denote \( f_0(z,{\bar{z}})\triangleq f_{z^2}\frac{z^2}{2}+f_{z\bar{z}}z{\bar{z}}+f_{z^2{\bar{z}}} z^2{\bar{z}}+\cdots , \) and write equation (5.23) as \( \frac{dz(t)}{dt}=i\omega z+g(z,{\bar{z}}). \) Besides, denote

$$\begin{aligned} g(z,{\bar{z}})={\bar{q}}^*(0)f_0(z,{\bar{z}})=g_{20}\frac{z^2}{2}+g_{11} z{\bar{z}}+g_{02}\frac{{\bar{z}}^2}{2}+g_{21}\frac{ z^2{\bar{z}}}{2}+\cdots . \end{aligned}$$
(5.24)

Then we have

$$\begin{aligned} g_{20}={\bar{q}}^*(0)f_{z^2},\ g_{11}={\bar{q}}^*(0)f_{z{\bar{z}}},\ g_{02}={\bar{q}}^*(0)f_{{\bar{z}}^2},\ g_{21}={\bar{q}}^*(0)f_{z^2{\bar{z}}}. \end{aligned}$$
(5.25)

From (5.21) and (5.22), it follows that

$$\begin{aligned} \begin{aligned} x_t(\theta )&=(1,q_1,q_2,q_3,q_4)^Te^{i\hat{\kappa }\hat{\tau }_m \theta }z+(1,{\bar{q}}_1,{\bar{q}}_2,{\bar{q}}_3,\bar{q}_4)^Te^{-i\hat{\kappa }\hat{\tau }_m \theta }{\bar{z}}\\&\quad +W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z}+W_{02}(\theta )\frac{{\bar{z}}^2}{2}+\cdots . \end{aligned} \end{aligned}$$

We have

$$\begin{aligned} \begin{aligned} x_{1t}(-\frac{\tau _h^*}{\hat{\tau }_m})&=\displaystyle ze^{-i\hat{\kappa }\tau _h^*}+\bar{z}e^{i\hat{\kappa }\tau _h^*}+W_{20}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m})\frac{z^2}{2}+W_{11}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m})z\bar{z}+W_{02}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m})\frac{\bar{z}^2}{2}+\cdots ,\\ x_{5t}(-\frac{\tau _h^*}{\hat{\tau }_m})&=\displaystyle q_4ze^{-i\hat{\kappa }\tau _h^*}+{\bar{q}}_4\bar{z}e^{i\hat{\kappa }\tau _h^*}+W_{20}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m})\frac{z^2}{2}+W_{11}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m})z\bar{z}+W_{02}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m})\frac{\bar{z}^2}{2}+\cdots ,\\ x_{3t}(-1)&=\displaystyle q_2ze^{-i\hat{\kappa }\hat{\tau }_m}+\bar{q}_2\bar{z}e^{i\hat{\kappa }\hat{\tau }_m}+W_{20}^{(3)}(-1)\frac{z^2}{2}+W_{11}^{(3)}(-1)z\bar{z}+W_{02}^{(3)}(-1)\frac{{\bar{z}}^2}{2}+\cdots ,\\ x_{5t}(-1)&=\displaystyle q_4ze^{-i\hat{\kappa }\hat{\tau }_m}+\bar{q}_4\bar{z}e^{i\hat{\kappa }\hat{\tau }_m}+W_{20}^{(5)}(-1)\frac{z^2}{2}+W_{11}^{(5)}(-1)z\bar{z}+W_{02}^{(5)}(-1)\frac{{\bar{z}}^2}{2}+\cdots , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} f_{z^2}= \begin{pmatrix} \displaystyle -\beta _hq_4e^{-2i\hat{\kappa }\tau _h^*} \\ \displaystyle 0 \\ \displaystyle \beta _hq_4e^{-2i\hat{\kappa }\tau _h^*}\\ \displaystyle 0\\ \displaystyle -\beta _mq_2q_4e^{-2i\hat{\kappa }\hat{\tau }_m} \end{pmatrix},\ f_{z{\bar{z}}}= \begin{pmatrix} \displaystyle -\beta _h(q_4+{\bar{q}}_4) \\ \displaystyle 0 \\ \displaystyle \beta _h(q_4+{\bar{q}}_4)\\ \displaystyle 0\\ \displaystyle -\beta _m(q_2q_4+{\bar{q}}_2{\bar{q}}_4) \end{pmatrix},\ f_{{\bar{z}}^2}= \begin{pmatrix} \displaystyle -\beta _h{\bar{q}}_4 e^{2i\hat{\kappa }\tau _h^*} \\ \displaystyle 0 \\ \displaystyle \beta _h{\bar{q}}_4e^{2i\hat{\kappa }\tau _h^*} \\ \displaystyle 0\\ \displaystyle -\beta _m{\bar{q}}_2{\bar{q}}_4 e^{2i\hat{\kappa }\hat{\tau }_m} \end{pmatrix},\\ f_{z^2{\bar{z}}}= \begin{pmatrix} \displaystyle -\beta _h(\frac{1}{2} {W_{20}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} {\bar{q}}_4e^{i\hat{\kappa }\tau _h^*} + W_{11}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} )e^{-i\hat{\kappa }\tau _h^*} +\frac{1}{2} {W_{20}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} e^{-i\hat{\kappa }\tau _h^*}) \\ \displaystyle 0 \\ \displaystyle \beta _h(\frac{1}{2} {W_{20}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} e^{i\hat{\kappa }\tau _h^*}{\bar{q}}_4+ W_{11}^{(5)}( -\frac{\tau _h^*}{\hat{\tau }_m})e^{-i\hat{\kappa }\tau _h^*} +\frac{1}{2} {W_{20}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} } ){\bar{q}}_4 e^{-i\hat{\kappa }\tau _h^*}) \\ \displaystyle 0\\ \displaystyle -\beta _m(\frac{1}{2} {W_{20}^{(3)}(-1 )} \bar{q}_4e^{i\hat{\kappa }\hat{\tau }_m} + W_{11}^{(3)}( -1)q_4 e^{-i\hat{\kappa }\hat{\tau }_m}+\frac{1}{2}{W_{20}^{(5)}( -1)} {\bar{q}}_2 e^{-i\hat{\kappa }\hat{\tau }_m}) \end{pmatrix}. \end{array} \end{aligned}$$
(5.26)

In order to get \(g_{11}\), we still need to compute \(W_{20}(\theta )\) and \(W_{11}(\theta )\). From (5.19) and (5.21), we have

$$\begin{aligned} \begin{aligned} \dot{W}&=\displaystyle \dot{x}_t-\dot{z} q(\theta ) -\dot{{\bar{z}}} {\bar{q}}(\theta )\\&=\displaystyle {\left\{ \begin{array}{ll} A(0)W- {\bar{g}}{\bar{q}}(\theta )- gq(\theta ), &{} \theta \in [-1,0), \\ A(0)W- gq(0)- {\bar{g}} q(0) +f_0(z,{\bar{z}}),&{} \theta =0. \end{array}\right. } \end{aligned} \end{aligned}$$
(5.27)

On the other hand, in \(C_0\), we can write (5.27) as

$$\begin{aligned} \begin{aligned} \dot{W}&=W_z\dot{z}+W_z\dot{{\bar{z}}}\\&=[W_{20}(\theta )z+W_{11}(\theta ){\bar{z}}](i\hat{\kappa }\hat{\tau }_m+g(z,{\bar{z}}))+[W_{11}(\theta )z+W_{02}(\theta )\bar{z}]\\&\quad (-i\hat{\kappa }\hat{\tau }_m+{\bar{g}}(z,{\bar{z}})). \end{aligned} \end{aligned}$$
(5.28)

Then substituting (5.22) and (5.24) into (5.27) and (5.28), comparing the coefficients of \(\frac{z^2}{2}\) and \(z{\bar{z}}\), one can get

$$\begin{aligned} (2i\hat{\kappa }\hat{\tau }_mI-A)W_{20}(\theta )= {\left\{ \begin{array}{ll} \displaystyle -g_{20}q(\theta )-{\bar{g}}_{02}{\bar{q}}(\theta ),&{} s\in [-1,0), \\ \displaystyle -g_{20}q(0)-{\bar{g}}_{02}{\bar{q}}(0)+f_{z^2},&{} s=0, \end{array}\right. } \end{aligned}$$
(5.29)
$$\begin{aligned} -AW_{11}(\theta )= {\left\{ \begin{array}{ll} \displaystyle -g_{11}q(\theta )-{\bar{g}}_{11}{\bar{q}}(\theta ),&{} s\in [-1,0), \\ \displaystyle -g_{11}q(0)-{\bar{g}}_{11}{\bar{q}}(0)+f_{z{\bar{z}}},&{} s=0, \end{array}\right. } \end{aligned}$$
(5.30)

From (5.18) and (5.29) we can see that when \(\theta \in [-1,0),\) \( W_{20}^{'}(\theta )=2i\hat{\kappa }\hat{\tau }_mW_{02}(\tau )+g_{20}q(\theta )+\bar{g}_{02}{\bar{q}}(\theta ), \) which has the solution

$$\begin{aligned} W_{20}(\theta )=\frac{ig_{02}}{\hat{\kappa }\hat{\tau }_m}q(0)e^{i\hat{\kappa }\hat{\tau }_m\theta } +\frac{i{\bar{g}}_{02}}{3\hat{\kappa }\hat{\tau }_m}\bar{q}(0)e^{-i\hat{\kappa }\hat{\tau }_m\theta } +\mathcal {E}_1e^{2i\hat{\kappa }\hat{\tau }_m\theta }. \end{aligned}$$
(5.31)

When \(\theta =0\)

$$\begin{aligned} \int _{-1}^0d\zeta (\theta )W_{20}(\theta )=2i\hat{\kappa }\hat{\tau }_mW_{20}+g_{02}q(0)+\bar{g}_{02}{\bar{q}}(0)-f_{z^2}. \end{aligned}$$
(5.32)

Substituting equation (5.31) into (5.32), one can obtain

$$\begin{aligned} \mathcal {E}_1=\left( 2i \hat{\kappa }\hat{\tau }_m I- \int _{-1}^0e^{2i\hat{\kappa }\hat{\tau }_m\theta }d\zeta (\theta )\right) f_{z^2}. \end{aligned}$$
(5.33)

From (5.18) and (5.30) we can see that when \(\theta \in [-1,0),\) \( W_{11}^{'}(\theta )= g_{11}q(\theta )+{\bar{g}}_{11}\bar{q}(\theta ), \) which has the solution

$$\begin{aligned} W_{11}(\theta )=-\frac{ig_{11}}{\hat{\kappa }\hat{\tau }_m}q(0)e^{i\hat{\kappa }\hat{\tau }_m\theta } +\frac{i{\bar{g}}_{11}}{\hat{\kappa }\hat{\tau }_m}\bar{q}(0)e^{-i\hat{\kappa }\hat{\tau }_m\theta } +\mathcal {E}_2. \end{aligned}$$
(5.34)

When \(\theta =0\)

$$\begin{aligned} \int _{-1}^0d\zeta (\theta )W_{11}(\theta )= g_{11}q(0)+{\bar{g}}_{11}\bar{q}(0)-f_{z{\bar{z}}}. \end{aligned}$$
(5.35)

Substituting equation (5.34) into (5.35) one can obtain

$$\begin{aligned} \mathcal {E}_2=\left( \int _{-1}^0d\zeta (\theta )\right) f_{z{\bar{z}}}. \end{aligned}$$
(5.36)

Therefore, from (5.25), (5.26), (5.33), (5.36) we can obtain

$$\begin{aligned} g_{20}&=2\hat{\tau }_m{\bar{D}}((-\beta _h q_4+{\bar{q}}_2^*\beta _h q_4)e^{-2\hat{\kappa }\tau _h^*}-\beta _m {\bar{q}}_4^*q_2q_4e^{-2\hat{\kappa }\hat{\tau }_m}),\\ g_{11}&=\hat{\tau }_m{\bar{D}}(\beta _h({\bar{q}}_4+q_4)(-1+{\bar{q}}_2^*) e^{-2\hat{\kappa }\tau _h^*}-\beta _m {\bar{q}}_4^*(q_2{\bar{q}}_4+{\bar{q}}_2q_4)e^{-2\hat{\kappa }\hat{\tau }_m}),\\ g_{02}&=2\hat{\tau }_m{\bar{D}}((-\beta _h {\bar{q}}_4+{\bar{q}}_2^*\beta _h q_4)e^{-2\hat{\kappa }\tau _h^*}-\beta _m {\bar{q}}_4^*{\bar{q}}_2{\bar{q}}_4e^{-2\hat{\kappa }\hat{\tau }_m})\\ g_{21}&=2\hat{\tau }_m{\bar{D}}[-\beta _h(\frac{1}{2}{W_{20}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} {\bar{q}}_4e^{i\hat{\kappa }\tau _h^*} + W_{11}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} )e^{-i\hat{\kappa }\tau _h^*} +\frac{1}{2} {W_{20}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} e^{-i\hat{\kappa }\tau _h^*}) \\&\quad +{\bar{q}}_2^*\beta _h(\frac{1}{2} {W_{20}^{(1)}(-\frac{\tau _h^*}{\hat{\tau }_m} )} e^{i\hat{\kappa }\tau _h^*}{\bar{q}}_4+ W_{11}^{(5)}( -\frac{\tau _h^*}{\hat{\tau }_m})e^{-i\hat{\kappa }\tau _h^*} +\frac{1}{2} {W_{20}^{(5)}(-\frac{\tau _h^*}{\hat{\tau }_m} } ){\bar{q}}_4 e^{-i\hat{\kappa }\tau _h^*})\\&\quad -{\bar{q}}_4^*\beta _m( \frac{1}{2}{W_{20}^{(3)}(-1 )} \bar{q}_4e^{i\hat{\kappa }\hat{\tau }_m} + W_{11}^{(3)}( -1)q_4 e^{-i\hat{\kappa }\hat{\tau }_m}+\frac{1}{2} {W_{20}^{(5)}( -1)} {\bar{q}}_2 e^{-i\hat{\kappa }\hat{\tau }_m})]. \end{aligned}$$

After analysis and computation, we have the following quantities:

$$\begin{aligned} \begin{aligned} C_1(0)&=\displaystyle \frac{i}{2\omega }\big (g_{20}g_{11}-2|g_{11}|^2-\frac{1}{3}|g_{02}|^2\big )+\frac{g_{21}}{2},\ \displaystyle \mu _2=\displaystyle -\frac{Re\{C_1(0)\}}{Re\{\lambda '(\hat{\tau }_m)\}},\\ \beta _2&=\displaystyle 2Re\{C_1(0)\},\ \displaystyle T_2=\displaystyle -\frac{Im(C_1(0))+\mu _2Im\{\lambda '(\hat{\tau }_m)\}}{\omega }. \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Teng, Z., Wang, N. et al. Analysis of a delayed malaria transmission model including vaccination with waning immunity and reinfection. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02124-1

Keywords

Navigation