Skip to main content

Four classes of new entanglement-assisted quantum optimal codes


Entanglement-assisted quantum error-correcting codes (EAQECCs) provide a general framework for quantum code construction, which overcome certain self-orthogonal restriction. It becomes one main task in quantum error-correction to find EAQECCs with good parameters, especially entanglement-assisted quantum maximum distance separable (EAQMDS) codes. In this work, we construct four new families of EAQECC codes with flexible parameters in view of negacyclic codes. It is worth pointing out that those EAQECCs are EAQMDS codes when \(d\le (n+2)/2\). By exploring the selection of defining sets, the constructed EAQECCs possess larger minimum distance in contrast with the known results in the literatures.

This is a preview of subscription content, access via your institution.


  1. Lai, C., Brun, T., Wilde, M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013)

    Article  MathSciNet  Google Scholar 

  2. Grassl, M.: Entanglement-Assisted Quantum Communication Beating the Quantum Singleton Bound. AQIS, Taipei (2016)

    Google Scholar 

  3. Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  MathSciNet  Google Scholar 

  4. Wilde, M., Brun, T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    Article  Google Scholar 

  5. Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  Google Scholar 

  6. Liu, Y., Li, R., Lu, L., Ma, Y.: Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes. Quant. Inf. Process. 17(8), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  7. Guenda, K., Jitman, S., Gulliver, T.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  8. Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quant. Inf. Process. 19(1), 1–5 (2020)

    Article  MathSciNet  Google Scholar 

  9. Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quant. Inf. 12(3), 14500151–145001514 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quant. Inf. Process. 16(12), 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quant. Inf. Process. 17(10), 1–18 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quant. Inf. Process. 18, 1–12 (2019)

    Article  MathSciNet  Google Scholar 

  13. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quant. Inf. Process. 18(2), 1–28 (2019)

    Article  MathSciNet  Google Scholar 

  14. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quant. Inf. Process. 18(3), 1–12 (2019)

    Article  MathSciNet  Google Scholar 

  15. Wang, J., Li, R., Liu, Y., Guo, G.: Some negacyclic BCH codes and quantum codes. Quant. Inf. Process. 19(2), 1–20 (2020)

    MathSciNet  Google Scholar 

  16. Zhu, S., Jiang, W., Chen, X.: New entanglement-assisted quantum MDS codes with length \((q^2+1)/5\). Quant. Inf. Process. 19, 1–15 (2020)

    Article  Google Scholar 

  17. Pang, B., Zhu, S., Li, F., Chen, X.: New entanglement-assisted quantum MDS codes with larger minimum distance. Quant. Inf. Process. 19, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  18. Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)

    Article  MathSciNet  Google Scholar 

  19. MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. Elsevier, Amsterdam (1977)

    MATH  Google Scholar 

  20. Jiang, W., Zhu, S., Chen, X.: Optimal entanglement-assisted quantum codes with larger minimum distance. IEEE Commun. Lett. (2020).

    Article  Google Scholar 

  21. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank the referees and editor in chief for their helpful comments and a very meticulous reading of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiaojing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (Nos. 12001002, 61772168, 61972126) and the Natural Science Foundation of Anhui Province (No. 2008085QA04).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhu, S., Jiang, W. et al. Four classes of new entanglement-assisted quantum optimal codes. J. Appl. Math. Comput. 67, 937–952 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • EAQMDS codes
  • Negacyclic codes
  • Defining sets