Skip to main content
Log in

Constructions of good entanglement-assisted quantum error correcting codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Entanglement-assisted quantum error correcting codes (EAQECCs) are a simple and fundamental class of codes. They allow for the construction of quantum codes from classical codes by relaxing the duality condition and using pre-shared entanglement between the sender and receiver. However, in general it is not easy to determine the number of shared pairs required to construct an EAQECC. In this paper, we show that this number is related to the hull of the classical code. Using this fact, we give methods to construct EAQECCs requiring desirable amounts of entanglement. This allows for designing families of EAQECCs with good error performance. Moreover, we construct maximal entanglement EAQECCs from LCD codes. Finally, we prove the existence of asymptotically good EAQECCs in the odd characteristic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bierbrauer J., Faina G., Giulietti M., Marcugini S., Pambianco F.: The geometry of quantum codes. Innov. Incid. Geom. 6, 53–71 (2009).

    MathSciNet  MATH  Google Scholar 

  2. Bierbrauer J., Bartoli D., Faina G., Marcugini S., Pambianco F., Edel Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. 72, 733–747 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. Brun T., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  4. Brun T., Devetak I., Hsieh M.H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60, 3073–3089 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ezerman M.F., Grassl M., Solé P.: The weights in MDS codes. IEEE Trans. Inf. Theory 57, 392–396 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan J., Chen H., Xu J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016).

    MathSciNet  Google Scholar 

  8. Fujiwara Y., Clark D., Vandendriessche P., De Bock M., Tonchev V.: Entanglement assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010).

    Article  Google Scholar 

  9. Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, London (1965).

    MATH  Google Scholar 

  10. Hsich M.H., Devetak I., Brun T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007).

    Article  Google Scholar 

  11. Hsieh M.H., Brun T.A., Devetak I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009).

    Article  Google Scholar 

  12. Ireland K.F., Rosen M.: A Classical Introduction to Modern Number Theory. Springer, New York (1982).

    Book  MATH  Google Scholar 

  13. Jin L., Ling S., Luo J., Xing C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. Kribs D., Laflamme R., Poulin D.: Unified and generalized approach to quantum error correction. Phys. Rev. Lett. 94, 180501 (2005).

    Article  Google Scholar 

  15. Lai C.Y., Brun T.A., Wilde M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lisonĕk P., Singh V.: Quantum codes from nearly self-orthogonal quaternary linear codes. Des. Codes Cryptogr. 73, 417–424 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. Qian J., Zhang L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77, 193–202 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. Steane P.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. Stichtenoth H.: Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound. IEEE Trans. Inf. Theory 52, 2218–2224 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008).

    Article  Google Scholar 

  22. Yang X., Massey J.L.: The necessary and sufficient condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994).

    Article  MATH  Google Scholar 

  23. Zhang T., Ge G.: Quantum codes from generalized Reed-Solomon codes and matrix-product codes. arXiv:1508.00978 (2015).

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions. S. Jitman is supported by the Thailand Research Fund under Research Grant TRG5780065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somphong Jitman.

Additional information

Communicated by V. D. Tonchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guenda, K., Jitman, S. & Gulliver, T.A. Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018). https://doi.org/10.1007/s10623-017-0330-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0330-z

Keywords

Mathematics Subject Classification

Navigation