Skip to main content

Advertisement

Log in

Decade-long WT1-specific CTLs induced by WT1 peptide vaccination

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Introduction

The peptide-based cancer vaccine targeting Wilms’ tumor 1 (WT1) is a promising immunotherapeutic strategy for hematological malignancies. It remains unclear how long and to what extent the WT1-specific CD8 + cytotoxic T cell (CTL) persist after WT1 peptide vaccination.

Methods

The WT1 peptide vaccine was administered with written consent to a patient with CML in the chronic phase who did not respond well to imatinib, and the patient was followed for 12 years after vaccination. Immune monitoring was performed by specific amplification of WT1-specific CTLs using a mixed lymphocyte peptide culture. T-cell receptors (TCRs) of amplified WT1-specific CTLs were analyzed using next-generation sequencing. This study was approved by the Institutional Review Board of our institution.

Result

WT1-specific CTLs, which were initially detected during WT1 peptide vaccination, persisted at a frequency of less than 5 cells per 1,000,000 CD8 + T cells for more than 10 years. TCR repertoire analysis confirmed the diversity of WT1-specific CTLs 11 years after vaccination. CTLs exhibited WT1 peptide-specific cytotoxicity in vitro.

Conclusion

The WT1 peptide vaccine induced an immune response that persists for more than 10 years, even after cessation of vaccination in the CML patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, M.M., upon reasonable request.

References

  1. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Butterfield LH. Cancer vaccines. BMJ. 2015;350: h988.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, et al. Cancer-testis antigen peptide vaccine for cancer immunotherapy: progress and prospects. Transl Oncol. 2019;12(5):733–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahlers JD, Belyakov IM. Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood. 2010;115(9):1678–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev. 2006;211:214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oka Y, Tsuboi A, Kawakami M, Elisseeva OA, Nakajima H, Udaka K, et al. Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr Med Chem. 2006;13(20):2345–52.

    Article  CAS  PubMed  Google Scholar 

  8. Oji Y, Inoue M, Takeda Y, Hosen N, Shintani Y, Kawakami M, et al. WT1 peptide-based immunotherapy for advanced thymic epithelial malignancies. Int J Cancer. 2018;142(11):2375–82.

    Article  CAS  PubMed  Google Scholar 

  9. Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8.

    Article  CAS  PubMed  Google Scholar 

  10. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A. 2004;101(38):13885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuboi A, Hashimoto N, Fujiki F, Morimoto S, Kagawa N, Nakajima H, et al. A phase I clinical study of a cocktail vaccine of Wilms’ tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunol Immunother. 2019;68(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kan S, Bito T, Shimabuku M, Taguchi J, Ohkusa T, Shimodaira S, et al. Impact of mature dendritic cells pulsed with a novel WT1 helper peptide on the induction of HLAA2restricted WT1reactive CD8+ T cells. Int J Oncol. 2020;57(4):1047–56.

    CAS  PubMed  Google Scholar 

  16. Fujiki F, Oka Y, Tsuboi A, Kawakami M, Kawakatsu M, Nakajima H, et al. Identification and characterization of a WT1 (Wilms Tumor Gene) protein-derived HLA-DRB1*0405-restricted 16-mer helper peptide that promotes the induction and activation of WT1-specific cytotoxic T lymphocytes. J Immunother. 2007;30(3):282–93.

    CAS  PubMed  Google Scholar 

  17. Narita M, Masuko M, Kurasaki T, Kitajima T, Takenouchi S, Saitoh A, et al. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int J Med Sci. 2010;7(2):72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF, et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity. 2008;28(3):414–24.

    Article  CAS  PubMed  Google Scholar 

  19. Saitoh A, Narita M, Watanabe N, Tochiki N, Yamahira A, Nakamura T, et al. WT1 peptide vaccination in a CML patient: induction of effective cytotoxic T lymphocytes and significance of peptide administration interval. Med Oncol. 2011;28(1):219–30.

    Article  PubMed  Google Scholar 

  20. Nakamae H, Yoshida C, Miyata Y, Hidaka M, Uike N, Koga D, et al. A new diagnostic kit, ODK-1201, for the quantitation of low major BCR-ABL mRNA level in chronic myeloid leukemia: correlation of quantitation with major BCR-ABL mRNA kits. Int J Hematol. 2015;102(3):304–11.

    Article  CAS  PubMed  Google Scholar 

  21. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwabuchi M, Narita M, Uchiyama T, Iwaya S, Oiwa E, Nishizawa Y, et al. Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene. Mol Med Rep. 2015;12(2):2443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka-Harada Y, Kawakami M, Oka Y, Tsuboi A, Katagiri T, Elisseeva OA, et al. Biased usage of BV gene families of T-cell receptors of WT1 (Wilms’ tumor gene)-specific CD8+ T cells in patients with myeloid malignancies. Cancer Sci. 2010;101(3):594–600.

    Article  CAS  PubMed  Google Scholar 

  24. Nakata J, Nakajima H, Hayashibara H, Imafuku K, Morimoto S, Fujiki F, et al. Extremely strong infiltration of WT1-specific CTLs into mouse tumor by the combination vaccine with WT1-specific CTL and helper peptides. Oncotarget. 2018;9(89):36029–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016;8(3):36.

    Article  CAS  PubMed  Google Scholar 

  26. Canale FP, Ramello MC, Nunez N, Araujo Furlan CL, Bossio SN, Gorosito Serran M, et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8(+) T cells. Cancer Res. 2018;78(1):115–28.

    Article  CAS  PubMed  Google Scholar 

  27. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575–9.

    Article  CAS  PubMed  Google Scholar 

  28. Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun. 2018;9(1):2724.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med. 2005;201(1):139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kitaura K, Yamashita H, Ayabe H, Shini T, Matsutani T, Suzuki R. Different somatic hypermutation levels among antibody subclasses disclosed by a new next-generation sequencing-based antibody repertoire analysis. Front Immunol. 2017;8:389.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sewell AK. Why must T cells be cross-reactive? Nat Rev Immunol. 2012;12(9):669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morimoto S, Fujiki F, Kondo K, Nakajima H, Kobayashi Y, Inatome M, et al. Establishment of a novel platform cell line for efficient and precise evaluation of T cell receptor functional avidity. Oncotarget. 2018;9(75):34132–41.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Watanabe K, Toji S, Ohtake J, Nakano K, Satoh T, Kitamura H, et al. Establishment of a stable T lymphoma cell line transduced with HLA-A*24:02-restricted WT1-specific TCR genes and its application to antigen-specific immunomonitoring. Biomed Res. 2013;34(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  34. Kondo K, Fujiki F, Nakajima H, Yatsukawa E, Morimoto S, Tatsumi N, et al. An essential role of the avidity of T-cell receptor in differentiation of self-antigen-reactive CD8+ T cells. J Immunother. 2016;39(3):127–39.

    Article  CAS  PubMed  Google Scholar 

  35. Fujiki F, Tsuboi A, Morimoto S, Hashimoto N, Inatome M, Nakajima H, et al. Identification of two distinct populations of WT1-specific cytotoxic T lymphocytes in co-vaccination of WT1 killer and helper peptides. Cancer Immunol Immunother. 2021;70(1):253–63.

    Article  CAS  PubMed  Google Scholar 

  36. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.

    Article  CAS  PubMed  Google Scholar 

  37. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arpinati M, Tolomelli G, Bochicchio MT, Castagnetti F, Amabile M, Bandini G, et al. Molecular monitoring of BCR-ABL transcripts after allogeneic stem cell transplantation for chronic myeloid leukemia. Biol Blood Marrow Transplant. 2013;19(5):735–40.

    Article  CAS  PubMed  Google Scholar 

  39. Clapp GD, Lepoutre T, Nicolini FE, Levy D. BCR-ABL transcript variations in chronic phase chronic myelogenous leukemia patients on imatinib first-line: possible role of the autologous immune system. Oncoimmunology. 2016;5(5): e1122159.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by JSPS KAKENHI Grant Number JP17K09006 to Y.S., JP18K07410 to M.N., and JP16K09868 to M.M. and a Japanese Society of Hematology Research Grant (2019–2020) to M.M.

Author information

Authors and Affiliations

Authors

Contributions

TS, MN, and MM designed the present study, conducted all experiments, analyzed the data obtained, and wrote the manuscript. TS and MN performed the MLPC assay. HS supervised this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Masayoshi Masuko.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwabe, T., Shibasaki, Y., Tamura, S. et al. Decade-long WT1-specific CTLs induced by WT1 peptide vaccination. Int J Hematol 119, 399–406 (2024). https://doi.org/10.1007/s12185-024-03723-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-024-03723-1

Keywords

Navigation