Skip to main content

Advertisement

Log in

Updates in biological therapies for knee injuries: tendons

  • Knee: Stem Cells (M Ferretti, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Tendons are subjected to tendinopathies caused by inflammation, degeneration, and weakening of the tendon, due to overuse and trauma, which may eventually lead to tendon rupture. Recently, there has been increasing interest in biological approaches to augment tissue healing. Tendon healing occurs through a dynamic process with inflammation, cellular proliferation, and tissue remodeling. In this review article, we discuss the more frequently proposed biological therapies for tendon injuries as platelet-rich plasma, mesenchymal stem cells, extracorporeal shockwave, and scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg. 2000;58:297–300. discussion 300–291.

    Article  CAS  PubMed  Google Scholar 

  2. Anitua E, Andia I, Sanchez M, et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res. 2005;23:281–6.

    Article  CAS  PubMed  Google Scholar 

  3. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004;114:1502–8.

    Article  PubMed  Google Scholar 

  4. Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg. 1997;55:1294–9.

    Article  CAS  PubMed  Google Scholar 

  5. Efeoglu C, Akcay YD, Erturk S. A modified method for preparing platelet-rich plasma: an experimental study. J Oral Maxillofac Surg. 2004;62:1403–7.

    Article  PubMed  Google Scholar 

  6. Weibrich G, Kleis WK, Hafner G, Hitzler WE, Wagner W. Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enriched plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Clin Oral Implants Res. 2003;14:357–62.

    Article  PubMed  Google Scholar 

  7. de Almeida AM, Demange MK, Sobrado MF, Rodrigues MB, Pedrinelli A, Hernandez AJ. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40:1282–8. This article is a randomized trial evaluating the use of leukocyte free PRP obtained with apheresis technique in patellar tendon healing.

    Article  PubMed  Google Scholar 

  8. Pifer MA, Maerz T, Baker KC, Anderson K. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte Platelet Rich Plasma (PRP) and the biologic response to PRP by human ligament fibroblasts. Am J Sports Med. 2014.

  9. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–67.

    Article  CAS  PubMed  Google Scholar 

  10. McCarrel TM, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am. 2012;94(141–8):e143.

    PubMed  Google Scholar 

  11. Choukroun J, Diss A, Simonpieri A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303.

    Article  PubMed  Google Scholar 

  12. Dohan Ehrenfest DM, Bielecki T, Mishra A, et al. In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes. Curr Pharm Biotechnol. 2012;13:1131–7. This article helps to have a better understanding of differences between various PRP preparations.

    Article  PubMed  Google Scholar 

  13. Weibrich G, Kleis WK, Hafner G. Growth factor levels in the platelet-rich plasma produced by 2 different methods: curasan-type PRP kit vs PCCS PRP system. Int J Oral Maxillofac Surg. 2002;17:184–90.

    Google Scholar 

  14. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.

    Article  PubMed  Google Scholar 

  15. Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy. 2012;28:429–39.

    Article  PubMed  Google Scholar 

  16. Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33:381–94.

    Article  PubMed  Google Scholar 

  17. Kurtz CA, Loebig TG, Anderson DD, DeMeo PJ, Campbell PG. Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med. 1999;27:363–9.

    CAS  PubMed  Google Scholar 

  18. Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 2000;71:513–8.

    Article  CAS  PubMed  Google Scholar 

  19. Anaguchi Y, Yasuda K, Majima T, Tohyama H, Minami A, Hayashi K. The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clin Biomech. 2005;20:959–65.

    Article  Google Scholar 

  20. Lyras D, Kazakos K, Verettas D, et al. Immunohistochemical study of angiogenesis after local administration of platelet-rich plasma in a patellar tendon defect. Int Orthop. 2010;34:143–8.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lyras DN, Kazakos K, Verettas D, et al. The effect of platelet-rich plasma gel in the early phase of patellar tendon healing. Arch Orthop Trauma Surg. 2009;129:1577–82.

    Article  PubMed  Google Scholar 

  22. Kajikawa Y, Morihara T, Sakamoto H, et al. Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol. 2008;215:837–45.

    Article  CAS  PubMed  Google Scholar 

  23. Boswell SG, Schnabel LV, Mohammed HO, Sundman EA, Minas T, Fortier LA. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons. Am J Sports Med. 2014;42:42–9.

    Article  PubMed  Google Scholar 

  24. Kovacevic D, Rodeo SA. Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res. 2008;466:622–33.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Matthews JS, Jones RL. Potentiation of aggregation and inhibition of adenylate cyclase in human platelets by prostaglandin E analogues. Br J Pharmacol. 1993;108:363–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007;16(5 Suppl):S191–7.

    Article  PubMed  Google Scholar 

  27. Kon E, Filardo G, Delcogliano M, et al. Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper’s knee. Injury. 2009;40:598–603.

    Article  PubMed  Google Scholar 

  28. Filardo G, Kon E, Della Villa S, Vincentelli F, Fornasari PM, Marcacci M. Use of platelet-rich plasma for the treatment of refractory jumper's knee. Int Orthop. 2010;34:909–15.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gosens T, Den Oudsten BL, Fievez E, van’t Spijker P. Fievez A Pain and activity levels before and after platelet-rich plasma injection treatment of patellar tendinopathy: a prospective cohort study and the influence of previous treatments. Int Orthop. 2012;36:1941–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bowman Jr KF, Muller B, Middleton K, Fink C, Harner CD, Fu FH. Progression of patellar tendinitis following treatment with platelet-rich plasma: case reports. Knee Surg Sports Traumatol Arthrosc. 2013;21:2035–9.

    Article  PubMed  Google Scholar 

  31. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42:610–8. This is a randomized controlled trial regarding the use of PRP for patellar tendinopathy.

    Article  PubMed  Google Scholar 

  32. Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26:509–24.

    Article  PubMed  Google Scholar 

  33. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75:1795–803.

    CAS  PubMed  Google Scholar 

  34. Da Silva M, Lucena S, Aguilar I, et al. Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake. Thromb Res. 2009;123:731–9.

    Article  PubMed  Google Scholar 

  35. Nin JR, Gasque GM, Azcarate AV, Beola JD, Gonzalez MH. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy. 2009;25:1206–13.

    Article  PubMed  Google Scholar 

  36. Sanchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010;26:470–80.

    Article  PubMed  Google Scholar 

  37. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25:1007–17.

    Article  CAS  PubMed  Google Scholar 

  38. Radice F, Yanez R, Gutierrez V, Rosales J, Pinedo M, Coda S. Comparison of magnetic resonance imaging findings in anterior cruciate ligament grafts with and without autologous platelet-derived growth factors. Arthroscopy. 2010;26:50–7.

    Article  PubMed  Google Scholar 

  39. Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone. 2006;39:678–83.

    Article  CAS  PubMed  Google Scholar 

  40. Caplan AI. Adult mesenchymal stem cells for tissue engineering vs regenerative medicine. J Cell Physiol. 2007;213:341–7.

    Article  CAS  PubMed  Google Scholar 

  41. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  42. Young M. Stem cell applications in tendon disorders: a clinical perspective. Stem Cells Int. 2012;2012:637836.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69:928–37.

    Article  CAS  PubMed  Google Scholar 

  44. Pascual-Garrido C, Rolon A, Makino A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: a 5-year-followup. Stem Cells Int. 2012;2012:953510.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc. 2007;15:1219–27.

    Article  PubMed  Google Scholar 

  46. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007;35:962–71.

    Article  PubMed  Google Scholar 

  47. Okuizumi T, Tohyama H, Kondo E, Yasuda K. The effect of cell-based therapy with autologous synovial fibroblasts activated by exogenous TGF-beta1 on the in situ frozen-thawed anterior cruciate ligament. J Orthop Sci. 2004;9:488–94.

    Article  CAS  PubMed  Google Scholar 

  48. Silva A, Sampaio R, Fernandes R, Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 2014;22:66–71.

    Article  PubMed  Google Scholar 

  49. Notarnicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (ESWT) on tendon tissue. Muscles Ligam Tendons J. 2012;2:33–7.

    Google Scholar 

  50. Hausdorf J, Schmitz C, Averbeck B, Maier M. Molecular basis for pain mediating properties of extracorporeal shock waves. Schmerz. 2004;18:492–7.

    Article  CAS  PubMed  Google Scholar 

  51. Chen YJ, Wang CJ, Yang KD, et al. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res. 2004;22:854–61.

    Article  CAS  PubMed  Google Scholar 

  52. Vulpiani MC, Vetrano M, Savoia V, Di Pangrazio E, Trischitta D, Ferretti A. Jumper's knee treatment with extracorporeal shock wave therapy: a long-term follow-up observational study. J Sports Med Phys Fitness. 2007;47:323–8.

    CAS  PubMed  Google Scholar 

  53. Vetrano M, Castorina A, Vulpiani MC, Baldini R, Pavan A, Ferretti A. Platelet-rich plasma vs focused shock waves in the treatment of jumper's knee in athletes. Am J Sports Med. 2013;41(4):795–803. This article demonstrate the outcomes of PRP and shock waves in the treatment of patellar tendinopathy.

    Article  PubMed  Google Scholar 

  54. Gigante A, Busilacchi A, Lonzi B, Cecconi S, Manzotti S, Renghini C, et al. Purified collagen I oriented membrane for tendon repair: an ex vivo morphological study. J Orthop Res. 2013;31:738–45.

    Article  CAS  PubMed  Google Scholar 

  55. Longo UG, Lamberti A, Maffulli N, Denaro V. Tendon augmentation grafts: a systematic review. Br Med Bull. 2010;94:165–88.

    Article  PubMed  Google Scholar 

  56. Meimandi-Parizi A, Oryan A, Moshiri A. Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study. PLoS One. 2013;8:e73016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Marco Kawamura Demange and Adriano Marques de Almeida declare that they have no conflict of interest. Scott A. Rodeo is a consultant for Rotation Medical and has stock with Cayenne Medical.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Kawamura Demange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demange, M.K., de Almeida, A.M. & Rodeo, S.A. Updates in biological therapies for knee injuries: tendons. Curr Rev Musculoskelet Med 7, 239–246 (2014). https://doi.org/10.1007/s12178-014-9230-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-014-9230-2

Keywords

Navigation