Skip to main content

Advertisement

Log in

Pediatric Obesity: Endocrinologic and Genetic Etiologies and Management

  • Obesity and Diet (G. Rao, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The prevalence of pediatric obesity has increased significantly over the past couple of generations. While monogenic obesity, syndromic obesity, and endocrinopathies associated with obesity have been increasingly recognized, they do not account for the increase in prevalence. We describe these rare conditions and the dysregulation of neuropathways in obesity and review successes and failures in treatments in both syndromic and nonsyndromic obesity.

Recent Findings

The best-described form of syndromic obesity is Prader–Willi Syndrome (PWS). While recent pharmacotherapies (specifically beloranib) demonstrated improvements in weight in PWS, the unfortunate adverse effect of deep vein thrombosis and pulmonary embolism necessitated the halting of its further development. Additional treatments are in development which target the signaling of ghrelin and other hypothalamic targets known to be dysregulated in PWS. For nonsyndromic obesity, lifestyle modifications remain the mainstay of treatment. However, recent large-scale interventions have had disappointing results. Bariatric surgery in children holds some promise, though complications and reoperations are common. Pharmacotherapies have been developed that treat rare monogenic forms of obesity, including MC4R agonists, which hold promise for these uncommon explanations for early childhood weight gain. There is evidence that methylation patterns in key genes in the neuroregulation of appetite are altered in individuals with obesity. Interestingly, this altered methylation is evident in sperm, which may have an impact on the heritability of gene expression across generations.

Summary

Pediatric obesity is complex and multifactorial. Efforts in rare monogenic and syndromic obesity may give rise to potential treatment opportunities in circumstances where lifestyle interventions are unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95. https://doi.org/10.1056/NEJMoa022050.

    Article  CAS  PubMed  Google Scholar 

  2. Farooqi IS, Yeo GSH, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9. https://doi.org/10.1172/JCI9397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collet T-H, Dubern B, Mokrosinski J, et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab. 2017;6(10):1321–9. https://doi.org/10.1016/j.molmet.2017.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237–47. https://doi.org/10.1056/NEJMoa063988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stijnen P, Ramos-Molina B, O’Rahilly S, Creemers JWM. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr Rev. 2016;37(4):347–71. https://doi.org/10.1210/er.2015-1117.

    Article  CAS  PubMed  Google Scholar 

  6. Thaker VV. Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev. 2017;28(2):379–405 http://www.ncbi.nlm.nih.gov/pubmed/30416642. Accessed July 6, 2019.

    PubMed  PubMed Central  Google Scholar 

  7. Crujeiras AB, Campion J, Díaz-Lagares A, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1–6. https://doi.org/10.1016/j.regpep.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  8. Barrès R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11. https://doi.org/10.1016/j.cmet.2012.01.001.

    Article  CAS  PubMed  Google Scholar 

  9. Lindholm ME, Marabita F, Gomez-Cabrero D, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69. https://doi.org/10.4161/15592294.2014.982445.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Donkin I, Versteyhe S, Ingerslev LR, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23(2):369–78. https://doi.org/10.1016/j.cmet.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  11. de Castro BT, Ingerslev LR, Alm PS, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5(3):184–97. https://doi.org/10.1016/j.molmet.2015.12.002.

    Article  CAS  Google Scholar 

  12. Geets E, Meuwissen MEC, Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet. 2019;95(1):23–40. https://doi.org/10.1111/cge.13367.

    Article  CAS  PubMed  Google Scholar 

  13. Chung WK. An overview of monogenic and syndromic obesities in humans. Pediatr Blood Cancer. 2012;58(1):122–8. https://doi.org/10.1002/pbc.23372.

    Article  PubMed  Google Scholar 

  14. D’Angelo CS, Varela MC, de Castro CIE, et al. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet. 2018;11(1):14. https://doi.org/10.1186/s13039-018-0363-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elena G, Bruna C, Benedetta M, Stefania DC, Giuseppe C. Prader-Willi syndrome: clinical aspects. J Obes. 2012;2012:1–13. https://doi.org/10.1155/2012/473941.

    Article  Google Scholar 

  16. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig. 2015;38(12):1249–63. https://doi.org/10.1007/s40618-015-0312-9.

    Article  CAS  Google Scholar 

  17. Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(3):365–76. https://doi.org/10.1002/ajmg.c.30273.

    Article  CAS  PubMed  Google Scholar 

  18. Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader–Willi syndrome: current perspectives. Diabetes, Metab Syndr Obes Targets Ther. 2018;11:579–93. https://doi.org/10.2147/DMSO.S141352.

    Article  Google Scholar 

  19. Emerick JE, Vogt KS. Endocrine manifestations and management of Prader-Willi syndrome. Int J Pediatr Endocrinol. 2013;2013(1):14. https://doi.org/10.1186/1687-9856-2013-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burman P, Ritzén EM, Lindgren AC. Endocrine dysfunction in Prader-Willi syndrome: a review with special reference to GH. Endocr Rev. 2001;22(6):787–99. https://doi.org/10.1210/edrv.22.6.0447.

    Article  CAS  PubMed  Google Scholar 

  21. Senda M, Ogawa S, Nako K, Okamura M, Sakamoto T, Ito S. The glucagon-like peptide-1 analog liraglutide suppresses ghrelin and controls diabetes in a patient with Prader-Willi syndrome. Endocr J. 2012;59(10):889–94 http://www.ncbi.nlm.nih.gov/pubmed/22785236. Accessed July 6, 2019.

    Article  CAS  Google Scholar 

  22. De Waele K, Ishkanian SL, Bogarin R, et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur J Endocrinol. 2008;159(4):381–8. https://doi.org/10.1530/EJE-08-0462.

    Article  CAS  PubMed  Google Scholar 

  23. McCandless SE, Yanovski JA, Miller J, et al. Effects of MetAP2 inhibition on hyperphagia and body weight in Prader–Willi syndrome: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2017;19(12):1751–61. https://doi.org/10.1111/dom.13021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuppens RJ, Donze SH, Hokken-Koelega ACS. Promising effects of oxytocin on social and food-related behaviour in young children with Prader-Willi syndrome: a randomized, double-blind, controlled crossover trial. Clin Endocrinol. 2016;85(6):979–87. https://doi.org/10.1111/cen.13169.

    Article  CAS  Google Scholar 

  25. Alsaif M, Elliot SA, MacKenzie ML, Prado CM, Field CJ, Haqq AM. Energy metabolism profile in individuals with Prader-Willi syndrome and implications for clinical management: a systematic review. Adv Nutr An Int Rev J. 2017;8(6):905–15. https://doi.org/10.3945/an.117.016253.

    Article  Google Scholar 

  26. Scheimann AO, Butler MG, Gourash L, Cuffari C, Klish W. Critical analysis of bariatric procedures in Prader-Willi syndrome. J Pediatr Gastroenterol Nutr. 2008;46(1):80–3. https://doi.org/10.1097/01.mpg.0000304458.30294.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irizarry KA, Miller M, Freemark M, Haqq AM. Prader Willi Syndrome: genetics, metabolomics, hormonal function, and new approaches to therapy. Adv Pediatr Infect Dis. 2016;63(1):47–77. https://doi.org/10.1016/j.yapd.2016.04.005.

    Article  Google Scholar 

  28. Forsythe E, Beales PL. Bardet-Biedl Syndrome.; 1993. http://www.ncbi.nlm.nih.gov/pubmed/20301537. Accessed July 6, 2019.

  29. Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet. 2016;90(1):3–15. https://doi.org/10.1111/cge.12737.

    Article  CAS  PubMed  Google Scholar 

  30. Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016;7(2):62–71. https://doi.org/10.1159/000445491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daniels AB, Sandberg MA, Chen J, Weigel-DiFranco C, Fielding Hejtmancic J, Berson EL. Genotype-phenotype correlations in Bardet-Biedl syndrome. Arch Ophthalmol (Chicago, Ill 1960). 2012;130(7):901–7. https://doi.org/10.1001/archophthalmol.2012.89.

    Article  Google Scholar 

  32. Dervisoglu E, Isgoren S, Kasgari D, Demir H, Yilmaz A. Obesity control and low protein diet preserve or even improve renal functions in Bardet-Biedl syndrome: a report of two cases. Med Sci Monit. 2011;17(1):CS12–4. https://doi.org/10.12659/MSM.881320.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Álvarez-Satta M, Castro-Sánchez S, Valverde D. Alström syndrome: current perspectives. Appl Clin Genet. 2015;8:171–9. https://doi.org/10.2147/TACG.S56612.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marshall JD, Bronson RT, Collin GB, et al. New Alström Syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005;165(6):675. https://doi.org/10.1001/archinte.165.6.675.

    Article  PubMed  Google Scholar 

  35. Kelly J. Alstrom syndrome; ALMS. https://omim.org/entry/203800. Published 2016. Accessed March 1, 2019.

  36. Girard D, Petrovsky N. Alström syndrome: insights into the pathogenesis of metabolic disorders. Nat Rev Endocrinol. 2011;7(2):77–88. https://doi.org/10.1038/nrendo.2010.210.

    Article  CAS  PubMed  Google Scholar 

  37. Lodh S, Hostelley TL, Leitch CC, O’Hare EA, Zaghloul NA. Differential effects on β-cell mass by disruption of Bardet–Biedl syndrome or Alstrom syndrome genes. Hum Mol Genet. 2016;25(1):57–68. https://doi.org/10.1093/hmg/ddv447.

    Article  CAS  PubMed  Google Scholar 

  38. Tai T-S, Lin S-Y, Sheu WH-H. Metabolic effects of growth hormone therapy in an Alström syndrome patient. Horm Res. 2003;60(6):297–301. https://doi.org/10.1159/000074248.

    Article  CAS  PubMed  Google Scholar 

  39. Sinha SK, Bhangoo A, Anhalt H, et al. Effect of metformin and rosiglitazone in a prepubertal boy with Alström syndrome. J Pediatr Endocrinol Metab. 2007;20(9):1045–52 http://www.ncbi.nlm.nih.gov/pubmed/18038714. Accessed July 6, 2019.

    Article  CAS  Google Scholar 

  40. Zufferey F, Sherr EH, Beckmann ND, et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet. 2012;49(10):660–8. https://doi.org/10.1136/jmedgenet-2012-101203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. 2010;463(7281):666–70. https://doi.org/10.1038/nature08689.

    Article  CAS  PubMed  Google Scholar 

  42. D’Angelo CS, Koiffmann CP. Copy number variants in obesity-related syndromes: review and perspectives on novel molecular approaches. J Obes. 2012;2012:1–15. https://doi.org/10.1155/2012/845480.

    Article  Google Scholar 

  43. Tiberio G, Digilio MC, Giannotti A. Obesity and WAGR syndrome. Clin Dysmorphol. 2000;9(1):63–4 http://www.ncbi.nlm.nih.gov/pubmed/10649802. Accessed July 6, 2019.

    Article  CAS  Google Scholar 

  44. Han JC. Rare syndromes and common variants of the brain-derived neurotrophic factor gene in human obesity. In: Progress in Molecular Biology and Translational Science. Vol 140. ; 2016:75-95. doi:https://doi.org/10.1016/bs.pmbts.2015.12.002.

    Google Scholar 

  45. Crocker MK, Yanovski JA. Pediatric obesity: etiology and treatment. Endocrinol Metab Clin N Am. 2009;38(3):525–48. https://doi.org/10.1016/j.ecl.2009.06.007.

    Article  CAS  Google Scholar 

  46. Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity—assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57. https://doi.org/10.1210/jc.2016-2573.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lodish MB, Keil MF, Stratakis CA. Cushing’s syndrome in pediatrics. Endocrinol Metab Clin N Am. 2018;47(2):451–62. https://doi.org/10.1016/j.ecl.2018.02.008.

    Article  Google Scholar 

  48. Stratakis CA. Cushing syndrome in pediatrics. Endocrinol Metab Clin N Am. 2012;41(4):793–803. https://doi.org/10.1016/j.ecl.2012.08.002.

    Article  Google Scholar 

  49. Magiakou MA, Mastorakos G, Oldfield EH, et al. Cushing’s syndrome in children and adolescents. Presentation, diagnosis, and therapy. N Engl J Med. 1994;331(10):629–36. https://doi.org/10.1056/NEJM199409083311002.

    Article  CAS  PubMed  Google Scholar 

  50. Nieman LK, Biller BMK, Findling JW, et al. The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40. https://doi.org/10.1210/jc.2008-0125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quattrin T, Wilfley DE. The promise and opportunities for screening and treating childhood obesity. JAMA Pediatr. 2017;171(8):733. https://doi.org/10.1001/jamapediatrics.2017.1604.

    Article  PubMed  Google Scholar 

  52. O’Connor EA, Evans CV, Burda BU, Walsh ES, Eder M, Lozano P. Screening for obesity and intervention for weight management in children and adolescents. JAMA. 2017;317(23):2427. https://doi.org/10.1001/jama.2017.0332.

    Article  PubMed  Google Scholar 

  53. Wilfley DE, Saelens BE, Stein RI, et al. Dose, content, and mediators of family-based treatment for childhood obesity: a multisite randomized clinical trial. JAMA Pediatr. 2017;171(12):1151–9. https://doi.org/10.1001/jamapediatrics.2017.2960.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reinehr T, Lass N, Toschke C, Rothermel J, Lanzinger S, Holl RW. Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J Clin Endocrinol Metab. 2016;101(8):3171–9. https://doi.org/10.1210/jc.2016-1885.

    Article  CAS  PubMed  Google Scholar 

  55. Wilfley DE, Hayes JF, Balantekin KN, Van Buren DJ, Epstein LH. Behavioral interventions for obesity in children and adults: evidence base, novel approaches, and translation into practice. Am Psychol. 2018;73(8):981–93. https://doi.org/10.1037/amp0000293.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dietz WH. We need a new approach to prevent obesity in low-income minority populations. Pediatrics. 2019;143(6):e20190839. https://doi.org/10.1542/peds.2019-0839.

    Article  PubMed  Google Scholar 

  57. Moore SM, Borawski EA, Love TE, et al. Two family interventions to reduce BMI in low-income urban youth: a randomized trial. Pediatrics. 2019;143(6):e20182185. https://doi.org/10.1542/peds.2018-2185.

    Article  PubMed  Google Scholar 

  58. Barkin SL, Heerman WJ, Sommer EC, et al. Effect of a behavioral intervention for underserved preschool-age children on change in body mass index: a randomized clinical trial. JAMA. 2018;320(5):450–60. https://doi.org/10.1001/jama.2018.9128.

    Article  PubMed  PubMed Central  Google Scholar 

  59. French SA, Sherwood NE, Veblen-Mortenson S, et al. Multicomponent obesity prevention intervention in low-income preschoolers: primary and subgroup analyses of the NET-works randomized clinical trial, 2012-2017. Am J Public Health. 2018;108(12):1695–706. https://doi.org/10.2105/AJPH.2018.304696.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pilitsi E, Farr OM, Polyzos SA, et al. Pharmacotherapy of obesity: available medications and drugs under investigation. Metabolism. 2019;92:170–92. https://doi.org/10.1016/j.metabol.2018.10.010.

    Article  CAS  PubMed  Google Scholar 

  61. Ryder JR, Fox CK, Kelly AS. Treatment options for severe obesity in the pediatric population: current limitations and future opportunities. Obesity (Silver Spring). 2018;26(6):951–60. https://doi.org/10.1002/oby.22196.

    Article  Google Scholar 

  62. Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA. Pharmacotherapy for childhood obesity: present and future prospects. Int J Obes. 2013;37(1):1–15. https://doi.org/10.1038/ijo.2012.144.

    Article  CAS  Google Scholar 

  63. Srivastava G, Fox CK, Kelly AS, et al. Clinical considerations regarding the use of obesity pharmacotherapy in adolescents with obesity. Obesity (Silver Spring). 2019;27(2):190–204. https://doi.org/10.1002/oby.22385.

    Article  Google Scholar 

  64. Inge TH, Courcoulas AP, Jenkins TM, et al. Five-year outcomes of gastric bypass in adolescents as compared with adults. N Engl J Med. 2019;380(22):2136–45. https://doi.org/10.1056/NEJMoa1813909.

    Article  PubMed  Google Scholar 

  65. Beets MW, Brazendale K, Weaver RG, Armstrong B. Rethinking behavioral approaches to compliment biological advances to understand the etiology, prevention, and treatment of childhood obesity. Child Obes 2019:chi.2019.0109. doi:https://doi.org/10.1089/chi.2019.0109.

    Article  Google Scholar 

  66. Fox CK, Kelly AS. The potential role of combination pharmacotherapy to improve outcomes of pediatric obesity: a case report and discussion. Front Pediatr. 2018;6. https://doi.org/10.3389/fped.2018.00361.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Farrell.

Ethics declarations

Conflict of Interest

Shashikala Gowda and Tasa Seibert declare that they have no conflict of interest.

Ryan Farrell has been principal investigator and/or coinvestigator for three different industry-sponsored pharmaceutical trials for Prader–Willi Syndrome (GLWL, Soleno, and Levo Therapeutics).

Naveen Uli has been principal investigator and/or coinvestigator for three different industry-sponsored pharmaceutical trials for Prader–Willi Syndrome (GLWL, Soleno, and Levo Therapeutics). He also was a coinvestigator for the Childhood Obesity Prevention and Treatment Research Consortium (COPTR).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity and Diet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowda, S., Seibert, T., Uli, N. et al. Pediatric Obesity: Endocrinologic and Genetic Etiologies and Management. Curr Cardiovasc Risk Rep 13, 39 (2019). https://doi.org/10.1007/s12170-019-0632-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-019-0632-y

Keywords

Navigation