Skip to main content
Log in

Selection of a Taxon-Specific Reference Gene for Qualitative and Quantitative PCR Detection of Carthamus tinctorius

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Safflower (Carthamus tinctorius) is an emerging model plant for the transgenic modification of fatty acid composition and the production of pharmaceuticals, proteins, or enzymes. Safflower is also a traditional Chinese medicine and is often used as a fake saffron product. Reliable detection of an endogenous reference gene is indispensable for the supervision of genetically modified safflower. Such an endogenous reference gene can also be used to specifically identify safflower ingredient in complex mixtures such as medicine or food. In this study, we identified and validated the CTOS gene as an endogenous reference for safflower. Conventional and real-time polymerase chain reaction (PCR) methods for detecting the CTOS gene sequence showed high interspecies specificity and intra-species stability. The lowest copy number detectable by conventional PCR was 10 haploid copies. The limit of detection and limit of quantification for the real-time PCR assay were estimated to be five and 40 haploid genome copies, respectively. Standard curves established for the real-time PCR assay exhibited good linearity (R 2 > 0.99) between the cycle threshold (Ct) values and the initial template copies. The developed conventional and real-time PCR assays were validated in routine analysis of the safflower ingredient in commercial Chinese medicines. In conclusion, the developed quantitative PCR methods were sufficiently specific and sensitive to be used in safflower genomic DNA quantification and safflower ingredient identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashrafi E, Razmjoo K (2010) Effect of irrigation regimes on oil content and composition of safflower (Carthamus tinctorius L.) cultivars. J Am Oil Chem Soc 5:499–506. doi:10.1007/s11746-009-1527-8

    Article  Google Scholar 

  • Babaei S, Talebi M, Bahar M (2014) Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control 1:323–328. doi:10.1016/j.foodcont.2013.07.019

    Article  Google Scholar 

  • Bai S, Li S, Yao T, Hu Y, Bao F, Zhang J, Zhang Y, Zhu S, and He Y (2011) Rapid detection of eight vegetable oils on optical thin-film biosensor chips. Food Control 10:1624–1628. doi:10.1016/j.foodcont.2011.03.019

  • Brzezinski JL (2007) Detection of sesame seed DNA in foods using real-time PCR. J Food Prot 4:1033–1036. doi:10.4315/0362-028X-70.4.1033

    Article  Google Scholar 

  • CAC/GL (2010) CAC/GL 74–2010. Guidelines on performance criteria and validation of methods for detection, identification and quantification of specific DNA sequences and specific proteins in foods. http://www.fao.org/fileadmin/user_upload/gmfp/resources/CXG_074e.pdf. Accessed Oct 2016

  • Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near eastern origin and five centers of diversity. Am J Bot 5:831–840. doi:10.3732/ajb.0900137

    Article  Google Scholar 

  • Christianson J, McPherson M, Topinka D, Hall L, Good AG (2008) Detecting and quantifying the adventitious presence of transgenic seeds in safflower, Carthamus tinctorius L. J Agr Food Chem 14:5506–5513. doi:10.1021/jf800683g

    Article  Google Scholar 

  • Dajue L, Mündel H (1996) Safflower, Carthamus tinctorius L. Promoting the conservation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome

  • Dooley JJ, Paine KE, Garrett SD, Brown HM (2004) Detection of meat species using TaqMan real-time PCR assays. Meat Sci 3:431–438. doi:10.1016/j.meatsci.2004.04.010

    Article  Google Scholar 

  • ENGL (2008) Definition of minimum performance requirements for analytical methods of GMO testing, European Network of GMO Laboratories (ENGL). http://gmo-crl.jrc.ec.europa.eu/doc/Min_Perf_Requirements_Analytical_methods.pdf. Assessed Mar 2016

  • ENGL (2011) Verification of analytical methods for GMO testing when implementing inter-laboratory validated methods. http://gmo-crl.jrc.ec.europa.eu/doc/ENGL%20MV%20WG%20Report%20July%202011.pdf. Assessed Mar 2016

  • Fajardo V, Gonzalez I, Martin I, Rojas M, Hernandez PE, Garcia T, Martin R (2008) Real-time PCR for quantitative detection of chamois (Rupicapra rupicapra) and pyrenean ibex (Capra pyrenaica) in meat mixtures. J AOAC Int 1:103–111

    Google Scholar 

  • Gryson N (2010) Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review. Anal Bioanal Chem 6:2003–2022. doi:10.1007/s00216-009-3343-2

    Article  Google Scholar 

  • Heidarbeigi K, Mohtasebi SS, Foroughirad A, Ghasemi-Varnamkhasti M, Rafiee S, Rezaei K (2015) Detection of adulteration in saffron samples using electronic nose. Int J Food Prop 7:1391–1401. doi:10.1080/10942912.2014.915850

    Article  Google Scholar 

  • ISO EN (2005a) ISO 21570: 2005 foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products–quantitative nucleic acid based methods. International Organization for Standardization Geneva, Switzerland

    Google Scholar 

  • ISO EN (2005b) ISO 21571: 2005 foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products—nucleic acid extraction. International Organization for Standardization Geneva, Switzerland

    Google Scholar 

  • James C (2015) 20th Anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief no. 51. ISAAA: Ithaca, NY.

  • Khan MA, von Witzke-Ehbrecht S, Maass BL, Becker HC (2009) Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet Resour Crop Ev 1:19–30. doi:10.1007/s10722-008-9338-6

    Article  Google Scholar 

  • Kisha T, Johnson R (2012) Safflower. Technological Innovations in Major World Oil Crops, vol 1. Springer, New York, pp 147–164

  • McLean MD, Chen R, Yu D, Mah K, Teat J, Wang H, Zaplachinski S, Boothe J, Hall JC (2012) Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower protein A-oleosin oilbody technology. Transgenic Res 6:1291–1301. doi:10.1007/s11248-012-9603-5

    Article  Google Scholar 

  • Meyer R, Chardonnens F, Hubner P, Luthy J (1996) Polymerase chain reaction (PCR) in the quality and safety assurance of food: detection of soya in processed meat products. Z Lebensm Unters Forsch 4:339–344. doi:10.1007/BF01231072

    Article  Google Scholar 

  • Mündel H, Bergman JW(2010) Safflower. Oil crops. Springer, p 423–447

  • Nykiforuk CL, Shewmaker C, Harry I, Yurchenko OP, Zhang M, Reed C, Oinam GS, Zaplachinski S, Fidantsef A, Boothe JG (2012) High level accumulation of gamma linolenic acid (C18: 3Δ6. 9, 12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res 2:367–381. doi:10.1007/s11248-011-9543-5

    Article  Google Scholar 

  • Pearl SA, Bowers JE, Reyes-Chin-Wo S, Michelmore RW, Burke JM (2014) Genetic analysis of safflower domestication. BMC Plant Biol 1:43. doi:10.1186/1471-2229-14-43

    Article  Google Scholar 

  • Peng S, Feng N, Guo M, Chen Y, Guo Q (2008) Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem Syst Ecol 7:531–538. doi:10.1016/j.bse.2008.03.010

    Article  Google Scholar 

  • Samancı B, Özkaynak E (2003) Effect of planting date on seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius) cultivars grown in the Mediterranean region of Turkey. J Agron Crop Sci 5:359–360. doi:10.1046/j.1439-037X.2003.00053.x

    Article  Google Scholar 

  • Sasanuma T, Sehgal D, Sasakuma T, Raina SN (2008) Phylogenetic analysis of Carthamus species based on the nucleotide sequence of the nuclear SACPD gene and chloroplast trn L-trn F IGS region. Genome 9:721–727. doi:10.1139/G08-059

    Google Scholar 

  • Scaravelli E, Broh M, Marchelli R, Van HA (2008) Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur Food Res Technol 3:857–869. doi:10.1007/s00217-007-0797-3

    Article  Google Scholar 

  • Scholdberg TA, Norden TD, Nelson DD, Jenkins GR (2009) Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR. J Agric Food Chem 7:2903–2911. doi:10.1021/jf803599t

    Article  Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.) Plant Cell Tissue and Organ Culture (PCTOC) 3:387–401. doi:10.1007/s11240-010-9792-7

    Article  Google Scholar 

  • SN/T (2010) SN/T 1199–2010: Protocol of the polymerase chain reaction for detection genetically modified component in cotton. China Import Export Inspection Standards

  • Sujatha M, Geetha A, Sivakumar P, and Palanisamy N (2008) Biotechnological interventions for genetic improvement of safflower. Proceedings of the 7th International Safflower Conference., p 3–6

  • Teletchea F, Maudet C, Hanni C (2005) Food and forensic molecular identification: update and challenges. Trends Biotechnol 7:359–366. doi:10.1016/j.tibtech.2005.05.006

    Article  Google Scholar 

  • Van den Eede G, Bonfini L, Cengia L, Iannini C, Kluga L, and Mazzara M (2010) Compendium of reference methods for GMO analyses. Publications Office of the European Union, Luxembourg, Luxembourg. http://publications.jrc.ec.europa.eu/repository/handle/111111111/15068

  • Wei J, Li F, Guo J, Li X, Xu J, Wu G, Zhang D, Yang L (2013) Collaborative ring trial of the papaya endogenous reference gene and its polymerase chain reaction assays for genetically modified organism analysis. J Agr Food Chem 47:11363–11370. doi:10.1021/jf403338a

    Article  Google Scholar 

  • Wu G, Zhang L, Wu Y, Cao Y, Lu C (2010) Comparison of five endogenous reference genes for specific PCR detection and quantification of Brassica napus. J Agr Food Chem 5:2812–2817. doi:10.1021/jf904255b

    Article  Google Scholar 

  • Xie P, Chen S, Liang Y, Wang X, Tian R, Upton R (2006) Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine. J Chromatogr A 1:171–180. doi:10.1016/j.chroma.2005.12.091

    Article  Google Scholar 

  • Zhang L, Cao Y, Liu X, Wu G, Wu Y, Lu C (2012a) In-depth analysis of the endogenous reference genes used in the quantitative PCR detection systems for rice. Eur Food Res Technol 6:981–993. doi:10.1007/s00217-012-1707-x

    Article  Google Scholar 

  • Zhang J, Wider B, Shang H, Li X, Ernst E (2012b) Quality of herbal medicines: challenges and solutions. Complement Ther Med 1:100–106. doi:10.1016/j.ctim.2011.09.004

    Article  Google Scholar 

  • Zhang L, Wu Y, Wu G, Cao Y, Lu C (2014) Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model. Anal Bioanal Chem 25:6385–6397. doi:10.1007/s00216-014-8056-5

    Article  Google Scholar 

  • Zhang L, Wu G, Wu Y, Cao Y, Xiao L, and Lu C (2009) The gene MT3-B can differentiate palm oil from other oil samples. J Agric Food Chem 16:7227–7232. doi:10.1021/jf901172d

  • Zhou X, Tang L, Xu Y, Zhou G, Wang Z (2014) Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 1:27–43. doi:10.1016/j.jep.2013.10.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Waltraud Schulze and Dr. Ossi Turunen for their help in preparing the manuscript. This research was supported by grants from a project of the National Natural Science Foundation of China (31401607) and a project of Natural Science Foundation of Hubei Province of China (2016CFB616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Qin.

Ethics declarations

Conflict of Interest

Li Zhang declares that she has no competing interests. He Zhu declares that he has no competing interests. Jie Ke declares that he has no competing interests. Rui Qin declares that he has no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not applicable for the nature of this study.

Additional information

Li Zhang and He Zhu contributed equally to this work

Electronic supplementary material

ESM 1

(DOCX 4243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhu, H., Ke, J. et al. Selection of a Taxon-Specific Reference Gene for Qualitative and Quantitative PCR Detection of Carthamus tinctorius . Food Anal. Methods 10, 2952–2963 (2017). https://doi.org/10.1007/s12161-017-0855-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0855-9

Keywords

Navigation