Skip to main content

Advertisement

Log in

Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25 % in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias −13.27 to 13.05 %). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Block A, Debode F, Grohmann L, Hulin J, Taverniers I, Kluga L, Barbau-Piednoir E, Broeders S, Huber I, Van den Bulcke M, Heinze P, Berben G, Busch U, Roosens N, Janssen E, Zel J, Gruden K, Morisset D (2013) BMC Bioinforma 14:256

    Article  Google Scholar 

  2. Holst-Jensen A, Bertheau Y, De LM, Grohmann L, Hamels S, Hougs L, Morisset D, Pecoraro S, Pla M, Van BM, Wulff D (2012) Biotechnol Adv 30:1318–1335

    Article  CAS  Google Scholar 

  3. Ciabatti I, Marchesi U, Froiio A, Patern A, Ruggeri M, Amaddeo D (2005) Vet Res Commun 29:31–34

    Article  Google Scholar 

  4. Lauwaars M, Anklam E (2004) Accred Qual Assur J Qual Comp Reliab Chem Meas 9:253–258

    Article  Google Scholar 

  5. Burns M, Valdivia H (2007) Eur Food Res Technol 226:7–18

    Article  CAS  Google Scholar 

  6. Holst-Jensen A (2009) Biotechnol Adv 27:1071–1082

    Article  CAS  Google Scholar 

  7. Regulation EC No 787/2004 (2004) Off J Eur Communities L348:18–21

    Google Scholar 

  8. Regulation EC No 619/2011 (2011) Off J Eur Communities L166:9–13

    Google Scholar 

  9. Gancberg D, Corbisier P, De Andrade Silva E, Mazoua S, Merveillie A, Tumba M, Trapmann S (2009) Certification of reference materials of maize seed powder with different mass fractions of genetically modified 98140 maize ERM®-BF427

  10. James C (2014) ISAAA Brief No. 46

  11. Taverniers I, Van BE, De LM (2001) Eur Food Res Technol 66:469–472

    CAS  Google Scholar 

  12. Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1077–1089

    CAS  Google Scholar 

  13. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1119–1126

    CAS  Google Scholar 

  14. Pardigol A, Guillet S, Popping B (2003) Eur Food Res Technol 216:412–420

    CAS  Google Scholar 

  15. Taverniers I, Van BE, De LM (2004) Anal Bioanal Chem 378:1198–1207

    Article  CAS  Google Scholar 

  16. Lievens A, Bellocchi G, De BD, Moens W, Savini C, Mazzara M, Van EG, Van BM (2010) Anal Bioanal Chem 396:2165–2173

    Article  CAS  Google Scholar 

  17. Taverniers I, Windels P, Vaitilingom M, Milcamps A, Van BE, Van EG, De LM (2005) J Agric Food Chem 53:3041–3052

    Article  CAS  Google Scholar 

  18. Jeynov B, De Andrade E, Broothaerts W, Corbisier P, Mazoua S, Merveillie A, Trapmann S, Emons H (2011) Certification of plasmid DNA containing NK603 maize DNA fragments—certified reference material ERM®-AD415

  19. Caprioara-Buda M, Meyer W, Jeynov B, Corbisier P, Trapmann S, Emons H (2012) Anal Bioanal Chem 404:29–42

    Article  CAS  Google Scholar 

  20. Corbisier P, Broeders S, Charels D, Trapmann S, Vincent S, Emons H (2007) Certification of plasmidic DNA containing MON 810 maize DNA fragments, ERM®-AD413

  21. Block A, Schwarz G (2003) Eur Food Res Technol 216:421–427

    CAS  Google Scholar 

  22. Burns M, Corbisier P, Wiseman G, Valdivia H, McDonald P, Bowler P, Ohara K, Schimmel H, Charels D, Damant A, Harris N (2006) Eur Food Res Technol 224:249–258

    Article  CAS  Google Scholar 

  23. Zhang H, Yang L, Guo J, Li X, Jiang L, Zhang D (2008) J Agric Food Chem 56:5514–5520

    Article  CAS  Google Scholar 

  24. Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D (2007) J Agric Food Chem 55:15–24

    Article  Google Scholar 

  25. Cao Y, Wu G, Wu Y, Nie S, Zhang L, Lu C (2011) J Agric Food Chem 59:8550–8559

    Article  CAS  Google Scholar 

  26. Li X, Wu Y, Zhang L, Cao Y, Li Y, Li J, Zhu L, Wu G (2014) Anal Biochem 451:18–24

    Article  CAS  Google Scholar 

  27. Community Reference Laboratory For GM Food And Feed (2011) Event-specific method for the quantification of oilseed rape Topas 19/2 using real-time PCR

  28. Wu G, Wu Y, Xiao L, Lu C (2009) Food Chem 112:232–238

    Article  CAS  Google Scholar 

  29. Arumuganathan K, Earle E (1991) Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  30. ENGL (2011) Verification of analytical methods for GMO testing when implementing inter-laboratory validated methods

  31. Toyota A, Akiyama H, Sugimura M, Watanabe T, Kikuchi H, Kanamori H, Hino A, Esaka M, Maitani T (2006) Biosci Biotechnol Biochem 70:821–827

    Article  CAS  Google Scholar 

  32. Wang X, Teng D, Yang Y, Tian F, Guan Q, Wang J (2011) Appl Microbiol Biotechnol 90:721–731

    Article  CAS  Google Scholar 

  33. ENGL (2008) Definition of minimum performance requirements for analytical methods of GMO testing. European Network of GMO Laboratories

Download references

Acknowledgments

This research was supported by grants from the Public Welfare Industry-Special Research Project of Ministry of Environmental Protection (201109028), the National Major Special Project for the Development of Transgenic Organisms (grant nos. 2014ZX08012-003, 2014ZX08012-002B, and 2014ZX08012-005), the Special Fund for Basic Scientific Research of Central Colleges, South-Central University for Nationalities (grant no. CZQ13009), and the Major Research Project of CAAS Science and Technology Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Lu.

Additional information

Li Zhang and Yuhua Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, Y., Wu, G. et al. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model. Anal Bioanal Chem 406, 6385–6397 (2014). https://doi.org/10.1007/s00216-014-8056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8056-5

Keywords

Navigation