Skip to main content
Log in

Biomass and Lipid Production in the Aerial Microalga Coccomyxa subellipsoidea KGU-D001 in the Liquid and Aerial Phases

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgal-biofilm culture has the advantages of less water requirement and higher lipid productivity. For efficient lipid production in an aerial phase condition, it is ideal to simultaneously induce microalgal biofilm growth and lipid accumulation. Biomass production and lipid accumulation in the aerial microalga Coccomyxa subellipsoidea KGU-D001 were investigated in the logarithmic growth phase. Initially, the alga was cultured in three different conditions: in liquid phase using Bold’s basal medium (BBM), and in the aerial phase in the presence or absence of BBM. In aerial phase conditions with nutrients (i.e., BBM), biomass production was prioritized over cell proliferation until approximately the 7th day of culture. In the liquid phase conditions, the ratio of total organic carbon to total nitrogen (C/N) in cells was almost constant during the culture period. However, in both aerial phase conditions, the C/N ratio increased during the culture period, more so in the absence of nutrients. The total fatty acid content also increased throughout the culture period. Then, algal cells were cultured for a 17-day culture; there would be a growth period of 10 days followed by a lipid accumulation period of 7 days. In such cultures in the presence of BBM, the biomass and lipid productivities (388 and 94.2 mg/m2/day) were both significantly higher in the aerial phase than in the liquid phase during the lipid production period. C. subellipsoidea can produce lipids even during growth if the CO2 supply is efficient and the C/N ratio is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data reported is included in the article or in the Supplementary Material.

Code Availability

Not applicable

References

  1. Behera B, Selvam M, Paramasivan B (2022) Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresour Technol 351:127038. https://doi.org/10.1016/j.biortech.2022.127038

    Article  CAS  PubMed  Google Scholar 

  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  4. Ananthi V, Brindhadevi K, Pugazhendhi A, Arun A (2021) Impact of abiotic factors on biodiesel production by microalgae. Fuel 284:118962. https://doi.org/10.1016/j.fuel.2020.118962

    Article  CAS  Google Scholar 

  5. Chhandama MVL, Satyan KB, Changmai B, Vanlalveni C, Rokhum SL (2021) Microalgae as a feedstock for the production of biodiesel: a review. Bioresour Technol Rep 15:100771. https://doi.org/10.1016/j.biteb.2021.100771

    Article  CAS  Google Scholar 

  6. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Progr 24:815–820. https://doi.org/10.1021/bp070371k

    Article  CAS  Google Scholar 

  7. Moreira BRA, Viana CRA, Cruz VH, Lopes PRM, Viana RS, Ramos RAV (2022) Meta-analytic review on third-generation biodiesel. Bioenerg Res 15:27–45. https://doi.org/10.1007/s12155-020-10232-6

    Article  CAS  Google Scholar 

  8. Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P (2017) Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew Sustain Energy Rev 72:1083–1093. https://doi.org/10.1016/j.rser.2016.10.028

    Article  CAS  Google Scholar 

  9. Faried M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sustain Energy Rev 79:893–913. https://doi.org/10.1016/j.rser.2017.05.199

    Article  Google Scholar 

  10. Rahpeyma SS, Raheb J (2019) Microalgae biodiesel as a valuable alternative to fossil fuels. Bioenerg Res 12:958–965. https://doi.org/10.1007/s12155-019-10033-6

    Article  CAS  Google Scholar 

  11. Brar A, Kumar M, Soni T, Vivekanand V, Pareek N (2021) Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: a review. Bioresour Technol 339:125597. https://doi.org/10.1016/j.biortech.2021.125597

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105. https://doi.org/10.1007/BF02858529

    Article  Google Scholar 

  13. Nowicka-Krawczyk P, Komar M, Gutarowska B (2022) Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae. Sci Total Environ 802:149856. https://doi.org/10.1016/j.scitotenv.2021.149856

    Article  CAS  PubMed  Google Scholar 

  14. Abe K, Ishiwatari T, Wakamatsu M, Aburai N (2014) Fatty acid content and profile of the aerial microalga Coccomyxa sp. isolated from dry environments. Appl Biochem Biotechnol 174:1724–1735. https://doi.org/10.1007/s10811-013-0106-4

    Article  CAS  PubMed  Google Scholar 

  15. Aburai N, Nishida A, Abe K (2020) Effects of light-emitting diodes (LEDs) on lipid production of the aerial microalga Coccomyxa sp. KGU-D001 under liquid- and aerial-phase conditions. J Biotechnol 323:274–282. https://doi.org/10.1016/j.jbiotec.2020.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Aburai N, Nishida A, Abe K (2021) Aerial microalgae Coccomyxa simplex isolated from a low-temperature, low-light environment, and its biofilm growth and lipid accumulation. Algal Res 60:102522. https://doi.org/10.1016/j.algal.2021.102522

    Article  Google Scholar 

  17. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energ Rev 10:248–268. https://doi.org/10.1016/j.rser.2004.09.002

    Article  CAS  Google Scholar 

  18. Ohkubo K, Aburai N, Miyashita H, Tsuzuki M, Abe K (2017) CO2 fixation and lipid accumulation in biofilms of the aerial microalga Coccomyxa sp. KGU-D001 (Trebouxiophyceae). J Appl Phycol 29:1745–1753. https://doi.org/10.1007/s10811-017-1123-5

    Article  CAS  Google Scholar 

  19. Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sust Energ Rev 52:418–429. https://doi.org/10.1016/j.rser.2015.07.090

    Article  CAS  Google Scholar 

  20. Behera B, Acharya A, Gargey IA, Aly N, Paramasivan B (2019) Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresour Technol Rep 5:297–316. https://doi.org/10.1016/j.biteb.2018.08.001

    Article  Google Scholar 

  21. Wang C, Wang Z, Luo F, Li Y (2017) The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy. World J Microbiol Biotechnol 33:160. https://doi.org/10.1007/s11274-017-2324-4

    Article  CAS  PubMed  Google Scholar 

  22. Danesh AF, Ebrahimi S, Salehi A, Parsa A (2017) Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem Eng J 125:56–64. https://doi.org/10.1016/j.bej.2017.05.017

    Article  CAS  Google Scholar 

  23. Kwok ACM, Wong JTY (2005) Lipid biosynthesis and its coordination with cell cycle progression. Plant Cell Physiol 46:1973–1986. https://doi.org/10.1093/pcp/pci213

    Article  CAS  PubMed  Google Scholar 

  24. Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31:134–138. https://doi.org/10.1016/j.tibtech.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  25. Mirizadeh S, Nosrati M, Shojaosadati SA (2020) Synergistic effect of nutrient and salt stress on lipid productivity of Chlorella vulgaris through two-stage cultivation. Bioenerg Res 13:507–517. https://doi.org/10.1007/s12155-019-10077-8

    Article  CAS  Google Scholar 

  26. Aburai N, Maruyama S, Shimizu K, Abe K (2019) Production of bioactive oligopeptide hydrolyzed by protease derived from aerial microalga Vischeria helvetica. J Biotechnol 294:67–72. https://doi.org/10.1016/j.jbiotec.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  27. Saha SK, Brewer CF (1994) Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res 254:157–167. https://doi.org/10.1016/0008-6215(94)84249-3

    Article  CAS  PubMed  Google Scholar 

  28. Aburai N, Kitajima E, Morita R, Fujii K (2023) Nitrogen-assisted lipid production by biofilms of aerial microalga Coccomyxa subellipsoidea KGU-D001 in the aerial phase. Arch Microbiol in press. https://doi.org/10.1007/s00203-022-03389-5

    Article  Google Scholar 

  29. Maltsev Y, Maltseva I, Maltseva S, Kociolek J, Kulikovskiy M (2019) Fatty acid content and profile of the novel strain of Coccomyxa elongata (Trebouxiophyceae, Chlorophyta) cultivated at reduced nitrogen and phosphorus concentrations. J Phycol 55:1154–1165. https://doi.org/10.1111/jpy.12903

    Article  CAS  PubMed  Google Scholar 

  30. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59. https://doi.org/10.1016/j.phytochem.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  31. Abe K, Bito T, Sato A, Aburai N (2014) Effects of light intensity and magnesium supplementation in pretreatment cycle on ammonium removal from wastewater of photobioreactor using a biofilter composed of the aerial microalga Trentepohlia aurea. J Appl Phycol 26:341–347. https://doi.org/10.1007/s12010-014-1181-y

    Article  CAS  Google Scholar 

  32. Tripathi S, Choudhary S, Poluri KM (2021) Insights into lipid accumulation features of Coccomyxa sp. IITRSTKM4 under nutrient limitation regimes. Environ Technol Innov 24:101786. https://doi.org/10.1016/j.eti.2021.101786

    Article  CAS  Google Scholar 

  33. Miyauchi H, Okada K, Fujiwara S, Tsuzuki M (2020) Characterization of CO2 fixation on algal biofilms with an infrared gas analyzer and importance of a space-rich structure on the surface. Algal Res 46:101814. https://doi.org/10.1016/j.algal.2020.101814

    Article  Google Scholar 

  34. Ruiz-Domínguez MC, Vaquero I, Obregón V, de laMorena B, Vílchez C, Vega JM (2015) Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol 27:1099–1108. https://doi.org/10.1007/s10811-014-0403-6

    Article  CAS  Google Scholar 

  35. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804. https://doi.org/10.1016/j.biortech.2020.122804

    Article  CAS  PubMed  Google Scholar 

  36. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Ann Bot 23:573–578. https://doi.org/10.1093/oxfordjournals.aob.a089239

    Article  Google Scholar 

  37. Cheng Y-S, Labavitch JM, VanderGheynst JS (2014) Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett Appl Microbiol 60:1–7. https://doi.org/10.1111/lam.12320

    Article  CAS  PubMed  Google Scholar 

  38. González-Hourcade M, del Campo EM, Casano LM (2021) The under-explored extracellular proteome of aero-terrestrial microalgae provides clues on different mechanisms of desiccation tolerance in non-model organisms. Microb Ecol 81:437–453. https://doi.org/10.1007/s00248-020-01604-8

    Article  CAS  PubMed  Google Scholar 

  39. Vingiani GM, Gasulla F, Barón-Sola Á, Sobrino-Plata J, Henández LE (2021) Physiological and molecular alterations of phycobionts of genus Trebouxia and Coccomyxa exposed to cadmium. Microb Ecol 82:334–343. https://doi.org/10.1007/s00248-021-01685-z

    Article  CAS  PubMed  Google Scholar 

  40. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546. https://doi.org/10.3389/fmicb.2016.00546

    Article  PubMed  PubMed Central  Google Scholar 

  41. Behera B, Selvam M, Dey B, Paramasivan B (2020) Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresour Technol 310:123392. https://doi.org/10.1016/j.biortech.2020.123392

    Article  CAS  PubMed  Google Scholar 

  42. Bermejo E, Ruiz-Domínguez MC, Cuaresma M, Vaquero I, Ramos-Merchante A, Vega JM, Vílchez C, Garbayo I (2018) Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. J Biosci Bioeng 125:669–675. https://doi.org/10.1016/j.jbiosc.2017.12.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by the Strategic Research Foundation Grant-aided Project for Private Universities from Ministry of Education, Culture, Sport, Science, and Technology, Japan (S1411005) and the Research Institute for Science and Technology of Kogakuin University for a special Grant-in-Aid to earn KAKENHI by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

Nobuhiro Aburai: conceptualization, resources, writing—review and editing, visualization, supervision, project administration, funding acquisition. Naritaka Kawashima: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft. Rei Morita: methodology, validation, formal analysis. Hiroki Miyauchi: methodology, validation, formal analysis. Katsuhiko Okada: formal analysis, investigation, resources. Norihiro Sato: formal analysis, investigation, resources. Shoko Fujiwara: formal analysis, investigation, resources. Katsuhiko Fujii: supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Nobuhiro Aburai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburai, N., Kawashima, N., Morita, R. et al. Biomass and Lipid Production in the Aerial Microalga Coccomyxa subellipsoidea KGU-D001 in the Liquid and Aerial Phases. Bioenerg. Res. 16, 2479–2488 (2023). https://doi.org/10.1007/s12155-023-10569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10569-8

Keywords

Navigation