Skip to main content
Log in

Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The chlorophtye Coccomyxa sp. (strain onubensis) growing under either inorganic phosphorus or sulfur starvation showed, unlike other non-extremophile microalgae, the ability to grow still for a period of 2 weeks with retention of high activity of photosystem II, due to P and S reserves in the microalga. Lutein and β-carotene contents slightly increased for a few days in nitrogen-lacking cultures only, with no major impact on productivity due to cease of growth. Maximum fatty acid content of Coccomyxa sp. (strain onubensis) growing in nutrient-lacking culture media accounted for about 13 % of dry biomass and about 50 % of the total lipid fraction, linolenic (C18:3) being the most abundant fatty acid. The lipid content of this microalga is on the average of non-extremophile microalgae, but it has the advantage of producing in highly acidic culture media (pH 2.5, and even lower) which allow its outdoor production-preserving cultures from other microalgae contamination. Nutrient-limited cultures showed a significant increase in the intracellular activity levels of the enzymes glutathione reductase (GR), ascorbate peroxidase (APX) and catalase (CAT), indicating a connection between nutrient deprivation and oxidative stress in Coccomyxa sp. (strain onubensis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A (1987) Effects of irradiance and nutrient deficiency on the chemical composition of Dunaliella bardawil Ben-Amotz and Avron (Volvocales, Chlorophyta). J Plant Physiol 131:479–487

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berden-Zrimec M, Drinovec L, Molinari L, Zrimec A, Umani SF, Monti M (2008) Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J Photochem Photobiol B 92:13–18

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 133–152

    Chapter  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Courchesne NMD, Parisien A, BeiWang P, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants, a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Garbayo I, Cuaresma M, Vílchez C, Vega JM (1998) Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem 43:1158–1161

    Article  Google Scholar 

  • Garbayo I, Torronteras R, Forján E, Cuaresma M, Casal C, Mogedas B, Ruiz-Domínguez MC, Márquez C, Vaquero I, Fuentes-Cordero JL, Fuentes R, González-del-Valle M, Vílchez C (2012) Identification and physiological aspects of a novel carotenoid-enriched, metal-resistant microalga isolated from an acidic river in Huelva (Spain). J Phycol 48:607–614

    Article  CAS  Google Scholar 

  • Geider RJ, La Roche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate and iron starvation. J Phycol 29:755–766

    Article  CAS  Google Scholar 

  • Geider RJ, MacIntyre H, Graziano LM, McKay RM (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 33:315–332

    Article  Google Scholar 

  • Gross W (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433:31–37

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1996) Cellular stress and protection mechanisms. Biochem Soc Trans 24:1023–1027

    CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstock for biofuel production, perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresource Technol 102:3343–3351

    Article  CAS  Google Scholar 

  • Kiritsakis AK, Dugan LR (1985) Studies in photooxidation of olive oil. J Am Oil Chem Soc 62:892–896

    Article  CAS  Google Scholar 

  • Lamers PP, Janssen M, De Vosc RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    Article  CAS  PubMed  Google Scholar 

  • Lers A, Levy H, Zamir A (1991) Co-regulation of a gene homologous to early light-induced genes in higher-plants and beta-carotene biosynthesis in the alga Dunaliella bardawil. J Biol Chem 266:13698–13705

    CAS  PubMed  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotech 84:281–291

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ 14:217–232

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendes A, Reis A, Vasconcelos R, Guerra P, Lopes da Silva T (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:119–214

    Article  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biot 66:486–496

    Article  CAS  Google Scholar 

  • Phadwal K, Singh PK (2003) Effect of nutrient depletion on β-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresource Technol 90:55–58

    Article  CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil, strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Scarsella M (2010) Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem Eng T 17:85–90

    Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC and Govindjee (Eds.), Chlorophyll Fluorescence: A Signature of Photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 279– 319.

  • Spijkerman E, Wacker A (2011) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15:597–609

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Lin J (2011) Biomass production and fatty acid profile of a Scenedesmus rubescens like microalga. Bioresource Technol 102:10131–10135

    Article  CAS  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acids production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  CAS  PubMed  Google Scholar 

  • Vaquero I, Ruiz-Domínguez MC, Márquez M, Vílchez C (2012) Cu-mediated biomass productivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis. Process Biochem 47:694–700

    Article  CAS  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  PubMed Central  PubMed  Google Scholar 

  • Volgusheva AA, Zagidullin VE, Antal TK, Korvatovsky BN, Krendeleva TE, Paschenko VZ, Rubin AB (2007) Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii. Biochim Biophys Acta 1767:559–564

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biores 4:287–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support from Junta de Andalucía (Grant no. AGR-4337, Proyecto de Excelencia) and European Union (FEDER funds) and University of Huelva (POCTEP, I2TEP project). This is contribution No. 65 from the CEIMAR Journal Series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Carmen Ruiz-Domínguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Domínguez, M.C., Vaquero, I., Obregón, V. et al. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol 27, 1099–1108 (2015). https://doi.org/10.1007/s10811-014-0403-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0403-6

Keywords

Navigation