Skip to main content
Log in

Characterisation of Authentic Lignin Biorefinery Samples by Fourier Transform Infrared Spectroscopy and Determination of the Chemical Formula for Lignin

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Efficient methods for lignin characterisation are increasingly important as the field of lignin valorisation is growing with the increasing use of lignocellulosic feedstocks, such as wheat straw and corn stover, in biorefineries. In this study, we characterised a set of authentic lignin biorefinery samples in situ with no prior purification and minimal sample preparation. Lignin chemical formulas and lignin Fourier transform infrared (FTIR) spectra were extracted from mixed spectra by filtering out signals from residual carbohydrates and minerals. From estimations of C, H and O and adjustment for cellulose and hemicelluloses contents, the average chemical formula of lignin was found to be C9H10.2O3.4 with slight variations depending on the biomass feedstock and processing conditions (between C9H9.5O2.8 and C9H11.1O3.6). Extracted FTIR lignin spectra showed many of the same characteristic peaks as organosolv and kraft lignin used as benchmark samples. Some variations in the lignin spectra of biorefinery lignin residue samples were found depending on biomass feedstock (wheat straw, corn stover or poplar) and on pretreatment severity, especially in the absorbance of bands at 1267 and 1032 cm−1 relative to the strong band at ~1120 cm−1. The suggested method of FTIR spectral analysis with adjustment for cellulose and hemicellulose is proposed to provide a fast and efficient way of analysing lignin in genuine lignin samples resulting from biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  CAS  Google Scholar 

  2. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  3. Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709–719

  4. Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57:264–279

    Article  CAS  Google Scholar 

  5. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bio Resources 6:3547–3568

    Google Scholar 

  6. Sammons RJ, Harper DP, Labbé N et al (2013) Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. Bioresources 8:2752–2767

    Article  Google Scholar 

  7. Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171

    Article  CAS  Google Scholar 

  8. Bertaux J, Froehlich F, Ildefonse P (1998) Multicomponent analysis of FTIR spectra; quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. J Sediment Res 68:440–447

    Article  CAS  Google Scholar 

  9. Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6:359–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerra A, Filpponen I, Lucia LA et al (2006) Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 54:5939–5947

    Article  CAS  PubMed  Google Scholar 

  11. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544

    Article  CAS  PubMed  Google Scholar 

  12. Asikkala J, Tamminen T, Argyropoulos DS (2012) Accurate and reproducible determination of lignin molar mass by acetobromination. J Agric Food Chem 60:8968–8973

    Article  CAS  PubMed  Google Scholar 

  13. Mansouri N-EE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24:8–16

    Article  Google Scholar 

  14. Ringena O, Lebioda S, Lehnen R, Saake B (2006) Size-exclusion chromatography of technical lignins in dimethyl sulfoxide/water and dimethylacetamide. J Chromatogr A 1102:154–163

    Article  CAS  PubMed  Google Scholar 

  15. Gidh AV, Decker SR, Vinzant TB et al (2006) Determination of lignin by size exclusion chromatography using multi angle laser light scattering. J Chromatogr A 1114:102–110

    Article  CAS  PubMed  Google Scholar 

  16. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20:131–141

    Article  CAS  Google Scholar 

  17. Xu F, Sun J, Sun R, et al (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23:180–193

  18. Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Article  CAS  PubMed  Google Scholar 

  19. Sluiter A, Hames B, Ruiz R et al (2008) Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. NREL Lab. Anal, Proced

    Google Scholar 

  20. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  21. Le DM, Sørensen HR, Knudsen NO, Meyer AS (2015) Implications of silica on biorefineries - interactions with organic material and mineral elements in grasses. Biofuels Bioprod Biorefin 9:109–121

    Article  CAS  Google Scholar 

  22. Le DM, Sørensen HR, Knudsen NO et al (2014) Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation. Biotechnol Biofuels 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vázquez G, Antorrena G, González J, Freire S (1997) FTIR, 1 H and 13 C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins. Holzforschung 51:158–166

    Article  Google Scholar 

  24. Casas A, Alonso MV, Oliet M et al (2012) FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. J Chem Technol Biotechnol 87:472–480

    Article  CAS  Google Scholar 

  25. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  26. Nimz HH, Robert D, Faix O, Nemr M (1981) Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung 35:16–26

    Article  CAS  Google Scholar 

  27. Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis 60:41–54

    Article  CAS  Google Scholar 

  28. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Søren Barsberg, University of Copenhagen for access to FTIR equipment. This work was supported by the Danish National Advanced Technology Foundation via the Technology Platform ‘Biomass for the 21st century—B21st’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Meyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, D.M., Nielsen, A.D., Sørensen, H.R. et al. Characterisation of Authentic Lignin Biorefinery Samples by Fourier Transform Infrared Spectroscopy and Determination of the Chemical Formula for Lignin. Bioenerg. Res. 10, 1025–1035 (2017). https://doi.org/10.1007/s12155-017-9861-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9861-4

Keywords

Navigation