Skip to main content
Log in

Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however, their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating peptide (R6/W3): Ac-RRWWRRWRR-NH2. One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. Garland Publishing Inc, New York

    Google Scholar 

  2. Rubertalli A, Sitia R (1995) Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations. Trends Cell Biol 5:409–412

    Article  Google Scholar 

  3. Dietz GPH, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27:85–131

    Article  CAS  Google Scholar 

  4. Langel U (ed) (2007) In: Handbook of Cell-Penetrating Peptides, 2nd edn. Taylor and Francis, Boca Raton

  5. Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217

    Article  CAS  Google Scholar 

  6. Hansen M, Kilk K, Langel U (2008) Predicting cell-penetrating peptides. Adv Drug Deliv Rev 60:572–579

    Article  CAS  Google Scholar 

  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–11045

    CAS  Google Scholar 

  8. Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  Google Scholar 

  9. Dom G, Shaw-Kackson C, Matis C, Bouffioux O, Picard JJ, Prochiantz A, Mingeot-Leclercq MP, Brasseur R, Rezsohazy R (2003) Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic Acid Res 31:556–561

    Article  CAS  Google Scholar 

  10. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side - biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem 6:2126–2142

    Article  CAS  Google Scholar 

  11. Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel U (2008) Distinct uptake routes of cell-penetrating peptide conjugates. El Andaloussi S. Bioconj Chem 19:2535–2542

    Article  CAS  Google Scholar 

  12. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  CAS  Google Scholar 

  13. Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786:126–138

    CAS  Google Scholar 

  14. Watkins CL, Schmaljohann D, Futaki S, Jones AT (2009) Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide. Biochem J 420:179–89

    Google Scholar 

  15. Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptides (CPP) internalization. J Biol Chem (in press)

  16. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2008) A new potent secondary amphipathic cell–penetrating peptide for siRNA delivery into mammalian cells. Molec Ther 17:95–103

    Article  CAS  Google Scholar 

  17. Enback J, Laakkonen P (2007) Tumour-homing peptides: tools for targeting, imaging and destruction. Biochem Soc Trans 35:780–783

    Article  CAS  Google Scholar 

  18. Aussedat B, Dupont E, Sagan S, Joliot AH, Lavielle S, Chassaing G, Burlina F (2008) Modifications in the chemical structure of Trojan carriers: impact on cargo delivery. Chem Commun 1398–1400

  19. Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84–87

    Article  CAS  Google Scholar 

  20. Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, Bolbach G, Lavielle S, Sagan S (2007) Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem 79:1932–1938

    Article  CAS  Google Scholar 

  21. Chassaing G, Prochiantz A (1997) Peptides usable as vectors for the intracellular addressing of bioactive molecules. PCT Int Appl WO 9712912 A1 19970410

  22. Lavielle S, Ling N, Guillemin R (1981) Solid-phase synthesis of two glycopeptides containing the amino acid sequence 5 to 9 of somatostatin. Carbohydrate Res 89:221–228

    Article  CAS  Google Scholar 

  23. Polt R, Porreca F, Szabo LZ, Bilsky EJ, Davis P, Abbruscato TJ, Davis TP, Horvath R, Yamamura HI, Hruby VJ (1994) Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 91:7114–7118

    Article  CAS  Google Scholar 

  24. Michael K, Wittmann V, König W, Sandow J, Kessler HS (1996) S- and C-glycopeptide derivatives of an LH-RH antagonist. Int J Peptide Protein Res 48:59–70

    CAS  Google Scholar 

  25. Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, Yamamura HI, Hruby VJ, Davis TP (2005) Biousian glycopeptides penetrate the blood–brain barrier. Tetrahedron Asymmetry 16:65–75

    Article  CAS  Google Scholar 

  26. Foerg C, Ziegler U, Fernandez-Carneado J, Giralt E, Rennert R, Beck-Sickinger AG, Merkle HP (2005) Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape. Biochemistry 44:72–81

    Article  CAS  Google Scholar 

  27. Magzoub M, Pramanik A, Graslund A (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44:14890–14897

    Article  CAS  Google Scholar 

  28. Shiraishi T, Nielsen PE (2006) Enhanced delivery of cell-penetrating peptide–peptide nucleic acid conjugates by endosomal disruption. Nat Protoc 1:633–636

    Article  CAS  Google Scholar 

  29. Lundberg P, El-Andaloussi S, Sutlu T, Johansson H, Langel U (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 21:2664–2671

    Article  CAS  Google Scholar 

  30. Lo SL, Wang S (2008) An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29:2408–2414

    Article  CAS  Google Scholar 

  31. Law B, Quinti L, Choi Y, Weissleder R, Tung CH (2006) A mitochodrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther 5:1944–1949

    Article  CAS  Google Scholar 

  32. Foillard S, Jin ZH, Garanger E, Boturyn D, Favrot MC, Coll JL, Dumy P (2008) Synthesis and biological characterisation of targeted pro-apoptotic peptide. Chem Bio Chem 9:2326–2332

    Article  CAS  Google Scholar 

  33. Marks AJ, Cooper MS, Anderson RJ, Orchard KH, Hale G, North JM, Ganeshaguru K, Steele AJ, Mehta AB, Lowdell MW, Wickremasinghe RG (2005) Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide. Cancer Res 65:2373–2377

    Article  CAS  Google Scholar 

  34. Collot M, Savreux J, Mallet JM (2008) New thioglycoside derivatives for use in odorless synthesis of MUXF3 N-glycan fragments related to food allergens. Tetrahedron 64:1523–1535

    Article  CAS  Google Scholar 

  35. Joosten JAF, Loimaranta V, Appeldoorn CCM, Haataja S, El Maate FA, Liskamp RMJ, Finne J, Pieters RJ (2004) Inhibition of streptococcus suis adhesion by dendritic galabiose compounds at low nanomolar concentration. J Med Chem 47:6499–6508

    Article  CAS  Google Scholar 

  36. Zhu X, Kawatkar S, Rao Y, Boons GJ (2006) Practical approach for the stereoselective introductionof b-arabinofuranosides. J Am Chem Soc 129:11948–11957

    Article  CAS  Google Scholar 

  37. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  38. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  CAS  Google Scholar 

  39. Zhang Z, Fan E (2006) Solid phase synthesis of peptidotriazoles with multiple cycles of triazole formation. Tetrahedron Lett 47:665–669

    Article  CAS  Google Scholar 

  40. Jang H, Fafarman A, Holub JM, Kirshenbaum K (2005) Click to fit: versatile polyvalent display on a peptidomimetic scaffold. Org Lett 7:1951–1954

    Article  CAS  Google Scholar 

  41. Coats SJ, Link JS, Gauthier D, Hlasta DJ (2005) Trimethylsilyl-directed 1,3-dipolar cycloaddition reactions in the solid-phase synthesis of 1,2,3-triazoles. Org Lett 7:1469–1472

    Article  CAS  Google Scholar 

  42. Harju K, Vahermo M, Mutikainen I, Yli-Kauhaluoma J (2003) Solid-phase synthesis of 1,2,3-triazoles via 1,3-dipolar cycloaddition. J Comb Chem 5:826–833

    Article  CAS  Google Scholar 

  43. Parikh PB, Kim YS, Chang YT (2002) Single resin bead kinetics using real time fluorescence measurements. Bull Korean Chem Soc 23:1509–1510

    CAS  Google Scholar 

  44. Ploux O, Chassaing G, Marquet A (1987) Cyclization of peptides on a solid support - Application to cyclic analogs of substance-P. Int J of Peptide and Protein Res 29:162–169

    Article  CAS  Google Scholar 

  45. Aubry S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S (2009) Cell-surface thiols affect cell entry of disulfide-conjugated peptides. FASEB J (in press)

  46. Burlina F, Sagan S, Bolbach G, Chassaing G (2005) Quantification of the cellular uptake of cell-penetrating peptides by MALDI-TOF mass spectrometry. Angew Chem Int Ed 44:4244–4247

    Article  CAS  Google Scholar 

  47. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides - A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  CAS  Google Scholar 

  48. Puckett CA, Barton JK (2009) Fluorescein redirects a ruthenium-octaarginine conjugate to the nucleus. J Am Chem Soc 131:8738–8739

    Article  CAS  Google Scholar 

  49. Dupont E, Prochiantz A, Joliot A (2007) Identification of a signal peptide for unconventional secretion. J Biol Chem 282:8994–9000

    Article  CAS  Google Scholar 

  50. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    Article  CAS  Google Scholar 

  51. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  CAS  Google Scholar 

  52. Rothbard B, Kreider E, VanDeusen CL, Wright L, Wylie BL, Wender PA (2002) Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618

    Article  CAS  Google Scholar 

  53. Bilsky EJ, Egleton RD, Mitchell SA, Palian MM, Davis P, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R (2000) Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem 43:2586–2590

    Article  CAS  Google Scholar 

  54. Buskas T, Ingale S, Boons GJ (2006) Glycopeptides as versatile tools for glycobiology. Glycobiology 16:113R–136R

    Article  CAS  Google Scholar 

  55. Maiti KK, Lee WS, Takeuchi T, Watkins C, Fretz M, Kim DC, Futaki S, Jones A, Kim KT, Chung SK (2007) Guanidine-containing molecular transporters: sorbitol-based transporters show high intracellular selectivity toward mitochondria. Angew Chem Int Ed 46:5880–5884

    Article  CAS  Google Scholar 

  56. Maiti KK, Jeon OY, Lee WS, Chung SK (2007) Design, synthesis, and delivery properties of novel guanidine-containing molecular transporters built on dimeric inositol scaffolds. Chem Eur J 13:762–775

    Article  CAS  Google Scholar 

  57. Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127:17618–17619

    Article  CAS  Google Scholar 

  58. Liu XM, Thakur A, Wang D (2007) Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Biomacromol 8:2653–2658

    Article  CAS  Google Scholar 

  59. Sachon E, Tasseau O, Lavielle S, Sagan S, Bolbach G (2003) Isotope and affinity tags in photoreactive substance P analogues to identify the covalent linkage within the NK-1 receptor by MALDI-TOF analysis. Anal Chem 75:6536–6543

    Article  CAS  Google Scholar 

  60. Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S (2007) Carbohydrateappended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Org Biomol Chem 5:2404–2412

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors greatly acknowledge Lynda Millstine’s contribution in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange Lavielle.

Additional information

Laurence Dutot and Pascaline Lécorché contributed equally

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutot, L., Lécorché, P., Burlina, F. et al. Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies. J Chem Biol 3, 51–65 (2010). https://doi.org/10.1007/s12154-009-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-009-0031-9

Keywords

Navigation