Skip to main content
Log in

GeoCloud4SDI: a cloud enabled open framework for development of spatial data infrastructure at city level

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Spatial Data Infrastructure (SDI) is considered as a holistic framework for effective collection, integration, discovery, sharing and delivery on a common platform for better utilization of multi-source geospatial data by global community, thereby, resulting in increased awareness of the use of geospatial data and the cooperation between decision-makers and stakeholders. Cloud computing technology can provide convenient and on-demand network access to shared computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction, and has been widely used in different applications. However, much research could not be found related to adoption of cloud computing in development of SDI at various levels from local to country. The present research is a step forward to fill this research gap by development of an open, interoperable and efficient framework for implementation of SDI at City level (acronym GeoCloud4SDI) for Prayagraj city (India) and deploying the same on OpenStack private cloud. Accordingly, multi-tier client server web GIS based SDI architecture and cloud enabled SDI services and workflow using load balancing and elastic computing architecture is developed. The novel framework for GeoCloud4SDI is developed using four layers, namely, (i) physical layer, (ii) cloud services layer, (iii) geospatial services layer and (iv) client layer. The physical layer and the cloud services layer combined together enables the access of virtualized computing resources from the cloud to enhance the performance of City level SDI. Geospatial services layer provides two different functionalities, namely, (a) management, retrieval and access of spatial data and metadata, and (b) retrieval of cloud services from cloud service layer. The performance of GeoCloud4SDI is examined by cloud enabled load balancing and elastic computing framework and the results show the response time reduced up to 50.43% along with 1.95 s performance gain for 1000 concurrent requests. The developed and implemented cloud enabled framework of GeoCloud4SDI is built via Open Geospatial Consortium (OGC) compliant interoperable service standards using Open Source Software (OSS), thereby ensuring standardisation and interoperability, and can also be adopted for other cities in India and the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the finding of this study are included with this article and make it available upon the reasonable request. No more additional data are required for this study.

References

  • Agrawal S, Tripathi AK, Gupta RD (2022) Development and implementation of automatic metadata generation framework for SDI using OSS: a case study of Indian NSDI. Arab J Geosci 15:408. https://doi.org/10.1007/s12517-022-09635-w

    Article  Google Scholar 

  • Ali A, Imran M (2019) The Evolution of National Spatial Data Infrastructure in Pakistan, Implementation Problems and the Way Forward. Int J Spat Data Infrastruct Res 15:110–142. https://doi.org/10.2902/1725-0463.15.art5

    Article  Google Scholar 

  • Ali Q, Kiriansky V, Simons J, Zaroo P (2012) Performance evaluation of HPC benchmarks on VMware’s ESXi server. In: Alexander M, Ambra P Da (eds) Euro-Par 2011: Parallel Processing Workshops. Euro-Par 2011. Lecture Notes in Computer Science, Euro-Par 2. Springer Singapore, pp 213–222

  • Barham P, Dragovic B, Fraser K, et al (2003) Xen and the art of virtualization. In: Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP’03. ACM, Bolton Landing, New York, USA, pp 164–177

  • Barik RK, Misra C, Lenka RK et al (2019) Hybrid mist-cloud systems for large scale geospatial big data analytics and processing: opportunities and challenges. Arab J Geosci 12:32. https://doi.org/10.1007/s12517-018-4104-3

    Article  Google Scholar 

  • Chen N, Zhang X, Wang C (2015) Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring. Comput Electron Agric 111:78–91. https://doi.org/10.1016/j.compag.2014.12.009

    Article  Google Scholar 

  • Clinton WJ (1994) Coordinating Geographic Data Acquisition and Access: The National Spatial Data Infrastructure. Executive Order 12906, Washington, DC

  • Coleman DJ, McLaughlin J (1998) Defining global geospatial data infrastructure (GGDI): components, stakeholders and interfaces. Geomatica 52:129–143. https://doi.org/10.5623/geomat-1998-0021

    Article  Google Scholar 

  • Cooper AK, Moellering H, Hjelmager J et al (2012) A spatial data infrastructure model from the computational viewpoint. Int J Geogr Inf Sci 27:1133–1151. https://doi.org/10.1080/13658816.2012.741239

    Article  Google Scholar 

  • Eken S, Sayar A (2019) A MapReduce-based big spatial data framework for solving the problem of covering a polygon with orthogonal rectangles. Teh Vjesn - Tech Gaz 26:36–42. https://doi.org/10.17559/TV-20170418094421

  • Fujioka E, Berghe EV, Donnelly B et al (2012) Advancing global marine biogeography research with open-source GIS software and cloud computing. Trans GIS 16:143–160. https://doi.org/10.1111/j.1467-9671.2012.01310.x

    Article  Google Scholar 

  • Gkonos C, Enescu II, Hurni L (2019) Spinning the wheel of design: evaluating geoportal graphical user interface adaptations in terms of human-centred design. Int J Cartogr 5:23–43. https://doi.org/10.1080/23729333.2018.1468726

    Article  Google Scholar 

  • Gupta RD, Agrawal S, Tripathi AK (2022) NSDI based innovative approach for development of open source SDI for health sector: A way forward. In: Garg PK, Tripathi NK, Kappas M, Gaur L (eds) Geospatial Data Science in Healthcare for Society 5.0. Disruptive Technologies and Digital Transformations for Society 5.0. Springer Singapore, pp 273–303. https://doi.org/10.1007/978-981-16-9476-9_13

  • Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing. San jose, CA, USA, pp 23–27

  • Huang H, Li Y (2009) Load balancing spatial analysis in XML/GML/SVG based WebGIS. In: 2009 International Conference on Environmental Science and Information Application Technology. IEEE, Wuhan, China, pp 538–541

  • Huang H, Li Y, Gartner G, Wang Y (2011) An SVG-based method to support spatial analysis in XML/GML/ SVG-based WebGIS. Int J Geogr Inf Sci 25:1561–1574. https://doi.org/10.1080/13658816.2010.532133

    Article  Google Scholar 

  • Huang Q, Li J, Li Z (2018) A geospatial hybrid cloud platform based on multi-sourced computing and model resources for geosciences. Int J Digit Earth 11:1184–1204. https://doi.org/10.1080/17538947.2017.1385652

    Article  Google Scholar 

  • Huang Z, Xu Z (2011) A method of using geoserver to publish economy geographical information. In: 2011 International Conference on Control, Automation and Systems Engineering, CASE 2011. IEEE, Singapore, Singapore, pp 1–4

  • Jiang H, van Genderen J, Mazzetti P, et al (2019) Current status and future directions of geoportals. Int J Digit Earth 0:1–22. https://doi.org/10.1080/17538947.2019.1603331

  • Kang S, Lee K (2016) Auto-scaling of Geo-based image processing in an OpenStack cloud computing environment. Remote Sens 8:662. https://doi.org/10.3390/rs8080662

    Article  Google Scholar 

  • Kivity A, Kamay Y, Laor D, et al (2007) KVM: the linux virtual machine monitor. In: Proceedings of the Linux Symposium. Ottawa, Ontario, Canada, pp 225–230

  • Klinkenberg B (2003) The true cost of spatial data in Canada. Can Geogr 47:37–49. https://doi.org/10.1111/1541-0064.02e11

    Article  Google Scholar 

  • Knoblock CA, Joshi AR, Megotia A, et al (2017) Automatic spatio-temporal indexing to integrate and analyze the data of an organization. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics - UrbanGIS’17. ACM, Redondo Beach, CA, USA, pp 1–8

  • Kotsev A, Minghini M, Tomas R et al (2020) From Spatial Data Infrastructures to Data Spaces—A Technological Perspective on the Evolution of European SDIs. ISPRS Int J Geo-Information 9:176. https://doi.org/10.3390/ijgi9030176

    Article  Google Scholar 

  • Lee D, Liang SHL (2011) Geopot: a cloud-based geolocation data service for mobile applications. Int J Geogr Inf Sci 25:37–41. https://doi.org/10.1080/13658816.2011.558017

    Article  Google Scholar 

  • Li Z, Yang C, Huang Q et al (2017) Building model as a service to support geosciences. Comput Environ Urban Syst 61:141–152. https://doi.org/10.1016/j.compenvurbsys.2014.06.004

    Article  Google Scholar 

  • Liu K, Yang C, Li W, et al (2011) The GEOSS clearinghouse high performance search engine. In: Proceedings 19th International Conference on Geoinformatics, Geoinformatics 2011. IEEE, Shanghai, pp 8–11

  • Maphale L, Smit JL (2021) A theoretical proposition for spatial data infrastructure on-going improvement. ISPRS Int J Geo-Information 10:9. https://doi.org/10.3390/ijgi10010009

    Article  Google Scholar 

  • Masó J, Pons X, Zabala A (2012) Tuning the second-generation SDI: theoretical aspects and real use cases. Int J Geogr Inf Sci 26:983–1014. https://doi.org/10.1080/13658816.2011.620570

    Article  Google Scholar 

  • Matthys C, Gkonos C (2017) Cloud-based architectures for auto-scalable web geoportals towards the cloudification of the GeoVITe swiss academic geoportal. ISPRS Int J Geo-Inform 6:192. https://doi.org/10.3390/ijgi6070192

    Article  Google Scholar 

  • Mazzetti P, Roncella R, Mihon D et al (2016) Integration of data and computing infrastructures for earth science: an image mosaicking use-case. Earth Sci Inform 9:325–342. https://doi.org/10.1007/s12145-016-0255-5

    Article  Google Scholar 

  • Mell P, Grance T (2011) The NIST definition of cloud computing (draft). In: Natl. Inst. Stand. Technol. Spec. Publ. 800–145, 7. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Accessed 15 March 2019

  • Mete MO, Yomralioglu T (2021) Implementation of serverless cloud GIS platform for land valuation. Int J Digit Earth 14:836–850. https://doi.org/10.1080/17538947.2021.1889056

    Article  Google Scholar 

  • Mokarram M, Khosravi MR (2021) A cloud computing framework for analysis of agricultural big data based on Dempster-Shafer theory. J Supercomput 77:2545–2565. https://doi.org/10.1007/s11227-020-03366-z

    Article  Google Scholar 

  • Niaraki AS, Rajabifard A, Kim K, Seo1 J (2010) Ontology based SDI to facilitate spatially enabled society. In: GSDI 12 World Conference-Realizing spatially enabled societies. GSDI 12, Singapore, Singapore, pp 19–22

  • Nurmi D, Wolski R, Grzegorczyk C, et al (2009) The eucalyptus open-source cloud-computing system. In: Proceedings of the 2009 ninth IEEE/ACM international symposium on cluster computing and the grid. IEEE, Shanghai, China, pp 124–131

  • Nyerges TL, Ramsey KS, Wilson MW, et al (2006) Design considerations for an internet portal to support public participation in transportation improvement decision making. In: Balram S, Dragicevic S (eds) Collaborative Geographic Information Systems. IGI Global, Hershey, pp 208–236

  • Oskouei AK, M. Modiri A, Alesheikh R, et al (2019) An analysis of the national spatial data infrastructure of Iran. Surv Rev 51:225–237. https://doi.org/10.1080/00396265.2017.1420586

  • Rajabifard A (2001) SDI hierarchy from local to global SDI initiatives. In: Presented at Open Seminar on SDI in Asia and the Pacific Region 7th PCGIAP meeting. Tsukuba, Japan, pp 1–9

  • Ronzhin S, Folmer E, Lemmens R et al (2019) Next generation of spatial data infrastructure: lessons from linked data implementations across europe. Int J Spat Data Infrastruct Res 14:83–107. https://doi.org/10.2902/1725-0463.2019.14.art4

    Article  Google Scholar 

  • Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, Incline Village, NV, USA, pp 1–10

  • Sjoukema J, Bregt AK, Crompvoets J (2017) Evolving spatial data infrastructures and the role of adaptive governance. ISPRS Int J Geo-Inform 6:254. https://doi.org/10.3390/ijgi6080254

    Article  Google Scholar 

  • Sjoukema J, Bregt AK, Crompvoets J, Sensing R (2020) Understanding governance dynamics: the governing. Int J Spat Data Infrastruct Res 15:1–35. https://doi.org/10.2902/1725-0463.2020.15.art1

    Article  Google Scholar 

  • Sotomayor B, Montero RS, Llorente IM, Foster I (2009) Virtual infrastructure management in private and hybrid clouds. IEEE Internet Comput 13:14–22. https://doi.org/10.1109/MIC.2009.119

    Article  Google Scholar 

  • Tang W, Feng W (2017) Parallel map projection of vector-based big spatial data: coupling cloud computing with graphics processing units. Comput Environ Urban Syst 61:187–197. https://doi.org/10.1016/j.compenvurbsys.2014.01.001

    Article  Google Scholar 

  • Thulasidasan S, Kasiviswanathan SP, Eidenbenz S, Romero P (2010) Explicit spatial scattering for load balancing in conservatively synchronized parallel discrete-event simulations. In: Proceedings - Workshop on Principles of Advanced and Distributed Simulation, PADS. IEEE, Atlanta, GA, USA, pp 150–157

  • Ticheler J, Hielkema JU (2007) Geonetwork opensource internationally standardized distributed spatial information management. Osgeo J 2:1–6

    Google Scholar 

  • Tripathi AK, Agrawal S, Gupta RD (2018) A comparative analysis of conventional hadoop with proposed cloud enabled hadoop framework for spatial big data processing. ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV-5:425–430. 10.5194/isprs-annals-IV-5-425-2018

  • Tripathi AK, Agrawal S, Gupta RD (2020) Cloud enabled SDI architecture: a review. Earth Sci Inform 13:211–231. https://doi.org/10.1007/s12145-020-00446-9

    Article  Google Scholar 

  • Trumpy E, Manzella A (2017) Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database. Int J Appl Earth Obs Geoinf 54:28–37. https://doi.org/10.1016/j.jag.2016.09.004

    Article  Google Scholar 

  • Vouk MA (2008) Cloud computing- issues, research and implementations. J Comput Inf Technol 4:29–34. https://doi.org/10.2498/cit.1001391

    Article  Google Scholar 

  • Vukotic A, Goodwill J (2011) Introduction to Apache Tomcat. In: Apache Tomcat 7. Apress, Berkeley, CA, p 294

  • Wang L, Ma Y, Yan J et al (2016) pipsCloud: High performance cloud computing for remote sensing big data management and processing. Futur Gener Comput Syst 78:353–368. https://doi.org/10.1016/j.future.2016.06.009

    Article  Google Scholar 

  • Wang S, Liu Y (2009) TeraGrid GIScience gateway: bridging cyberinfrastructure and GIScience. Int J Geogr Inf Sci 23:631–656. https://doi.org/10.1080/13658810902754977

    Article  Google Scholar 

  • Willmes C, Kürner D, Bareth G (2014) Building research data management infrastructure using open source software. Trans GIS 18:496–509. https://doi.org/10.1111/tgis.12060

    Article  Google Scholar 

  • Xia J, Yang C, Liu K et al (2015) Adopting cloud computing to optimize spatial web portals for better performance to support digital earth and other global geospatial initiatives. Int J Digit Earth 8:451–475. https://doi.org/10.1080/17538947.2014.929750

    Article  Google Scholar 

  • Xing H, Chen J, Wu H, Hou D (2019) A web service-oriented geoprocessing system for supporting intelligent land cover change detection. ISPRS Int J Geo-Inform 8:50. https://doi.org/10.3390/ijgi8010050

    Article  Google Scholar 

  • Xing H, Chen J, Zhou X (2015) A Geoweb-based tagging system for borderlands data acquisition. ISPRS Int J Geo-Inform 4:1530–1548. https://doi.org/10.3390/ijgi4031530

    Article  Google Scholar 

  • Xing Y, Zhan Y (2012) Virtualization and cloud computing. In: Zhang Y (ed) Future Wireless Networks and Information Systems. Lecture Notes in Electrical Engineering, Future Wir. Springer, Berlin, Heidelberg, pp 305–312

  • Yang C, Goodchild M, Huang Q et al (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329. https://doi.org/10.1080/17538947.2011.587547

    Article  Google Scholar 

  • Yang P, Evans J, Cole M, et al (2007) The emerging concepts and applications of the spatial web portal. Photogramm Eng Remote Sensing 73:691–698. https://doi.org/10.14358/PERS.73.6.691

  • Zhang L, Geertman S, Hooimeijer P, Lin Y (2019a) The usefulness of a web-based participatory planning support system in Wuhan, China. Comput Environ Urban Syst 74:208–217. https://doi.org/10.1016/j.compenvurbsys.2018.11.006

    Article  Google Scholar 

  • Zhang J, You S, Gruenwald L (2014) Large-scale spatial data processing on GPUs and GPU-accelerated clusters. ACM SIGSPATIAL Spec 6:27–34. https://doi.org/10.1145/2766196.2766201

    Article  Google Scholar 

  • Zhang C, Di L, Sun Z et al (2019b) Exploring cloud-based web processing service: a case study on the implementation of CMAQ as a service. Environ Model Softw 113:29–41. https://doi.org/10.1016/j.envsoft.2018.11.019

    Article  Google Scholar 

  • Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: State-of-the-art and research challenges. J Internet Serv Appl 1:7–18. https://doi.org/10.1007/s13174-010-0007-6

    Article  Google Scholar 

  • Zhang T, Tsou MH (2009) Developing a grid-enabled spatial web portal for internet GIServices and geospatial cyberinfrastructure. Int J Geogr Inf Sci 23:605–630. https://doi.org/10.1080/13658810802698571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ashutosh.Tripathi. Ashutosh.Tripathi wrote the main manuscript text. Ashutosh.Tripathi, Sonam.Agrawal and Rajan.Gupta prepared Figs. 1 and 5. Ashutosh.Tripathi prepared Figs. 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13 and 14. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashutosh Kumar Tripathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A.K., Agrawal, S. & Gupta, R.D. GeoCloud4SDI: a cloud enabled open framework for development of spatial data infrastructure at city level. Earth Sci Inform 16, 481–500 (2023). https://doi.org/10.1007/s12145-022-00893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00893-6

Keywords

Navigation