Skip to main content
Log in

Development and implementation of automatic metadata generation framework for SDI using OSS: a case study of Indian NSDI

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, and users that primarily function for the production and sharing of large geospatial data. Metadata refers to “data about data” and the metadata related to spatial data contains information like projection, scale, resolution, reliability, data provider, and distribution policy. Metadata is a key component of National Spatial Data Infrastructure (NSDI) of all nations as this aims to provide data discovery and access. The metadata standard of Indian NSDI is based upon standards taken from existing international standards like FGDC, ANZLIC, Dublin Core, and CSDGM. The drawbacks faced by Indian NSDI include duplication of metadata elements; non-availability of automatic metadata generation capability and metadata standard template; duplication of effort and time in the generation of metadata over the data server and catalogue server separately; and catalogue repository updates in future. To address challenges faced in Indian NSDI and the existing research gap, the present study is undertaken to develop novel metadata standard and framework for modifying and generation of metadata elements automatically using Open Source Software (OSS) for Indian NSDI. The proposed Indian NSDI metadata standard is more efficient as well as the modified metadata elements are more compatible with the other metadata standards. The developed framework for automatic metadata generation is based on the principle of three tier client–server architecture. These concepts are then implemented efficaciously for developing a prototype model of public health SDI for Prayagraj city (acronym GeoMeta4Health) using OSS. The functionality of GeoMeta4Health will help in the search, discovery, access, and visualization of geospatial data and metadata. This research will help geospatial communities not only to generate metadata automatically but also to expand and exchange their geospatial data in a wider domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arenas H, Harbelot B, Cruz C (2014) Implementing a semantic catalogue of geospatial data. In: Proceedings of the 10th International Conference on Web Information Systems and Technologies. SCITEPRESS - Science and and Technology Publications, Barcelona, Spain, pp 152–159

  • Arnold LM, McMeekin DA, Ivánová I, Armstrong K (2019) Knowledge on-demand: a function of the future spatial knowledge infrastructure. J Spat Sci 1–18. https://doi.org/10.1080/14498596.2019.1654942

  • Barbosa I (2013) Geospatial metadata retrieval from web services. Bol Ciências Geodésicas 19:3–13. https://doi.org/10.1590/S1982-21702013000100001

    Article  Google Scholar 

  • Batcheller JK (2008) Automating geospatial metadata generation — an integrated data management and documentation approach. Comput Geosci 34:387–398. https://doi.org/10.1016/j.cageo.2007.04.001

    Article  Google Scholar 

  • Baumann P (2012) OpenGIS Web coverage Service (WCS) implementation specification. Wayland, MA

  • Beaujardiere J de la (2006) OpenGIS Web Map Server (WMS) implementation specification. Wayland, MA

  • Bordogna G, Kliment T, Frigerio L et al (2016) A spatial data infrastructure integrating multisource heterogeneous geospatial data and time series: a study case in agriculture. ISPRS Int J Geo-Information 5:73. https://doi.org/10.3390/ijgi5050073

    Article  Google Scholar 

  • Brodeur J, Coetzee S, Danko D, et al (2019) Geographic information metadata—an outlook from the international standardization perspective. ISPRS Int J Geo-Information 8: https://doi.org/10.3390/ijgi8060280

  • Brovelli MA, Boccardo P, Bordogna G, et al (2019) Urban GEO Big Data. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-4/W14:23–30. 10.5194/isprs-archives-XLII-4-W14-23-2019

  • Bucher B, Tiainen E, Ellett von Brasch T et al (2020) Conciliating perspectives from mapping agencies and web of data on successful European SDIs: toward a European Geographic Knowledge Graph. ISPRS Int J Geo-Information 9:62. https://doi.org/10.3390/ijgi9020062

    Article  Google Scholar 

  • Census of India (2011) Office of the registrar general and census commissioner, ministry of home affairs, government of India

  • Centre ECJR (2007) Infrastructure for spatial information in Europe INSPIRE Metadata Implementing Rules: technical guidelines based on EN ISO 19115 and EN ISO 19119

  • Closa G, Masó J, Zabala A et al (2019) A provenance metadata model integrating ISO geospatial lineage and the OGC WPS: conceptual model and implementation. Trans GIS 23:1102–1124. https://doi.org/10.1111/tgis.12555

    Article  Google Scholar 

  • Coleman DJ, McLaughlin J (1998) Defining global geospatial data infrastructure (GGDI): components, stakeholders and interfaces. Geomatica 52:129–143

    Google Scholar 

  • Open Geospatial Consortium Inc (2017) OGC geoscience markup language 4.1 (GeoSciML). http://docs.opengeospatial.org/is/16-008/16-008.html. Accessed 15 Aug 2018

  • Craglia M, De BK, Jackson D et al (2012) Digital Earth 2020: towards the vision for the next decade. Int J Digit Earth 5:4–21. https://doi.org/10.1080/17538947.2011.638500

    Article  Google Scholar 

  • Crompvoets J, Bregt A, Rajabifard A, Williamson I (2004) Assessing the worldwide developments of national spatial data clearinghouses. Int J Geogr Inf Sci 18:665–689. https://doi.org/10.1080/13658810410001702030

    Article  Google Scholar 

  • DCMI Usage Board (2012) Dublin Core Metadata Element Set, Version 1.1. https://www.dublincore.org/specifications/dublin-core/dces/2012-06-14/. Accessed 12 Aug 2019

  • Demšar U (2004) A visualisation of a hierarchical structure in geographical metadata. In: 7th AGILE Conference on Geographic Information Science. Heraklion, Greece, pp 213–221

  • Díaz P, Masó J, Sevillano E et al (2012) Analysis of quality metadata in the GEOSS Clearinghouse. Int J Spat Data Infrastructures Res 7:352–377. https://doi.org/10.2902/1725-0463.2012.07.art17

    Article  Google Scholar 

  • Dutta D, Pandey S (2018) Development of State Spatial Data Infrastructure (SSDI): Indian Experience. In: Sarda NL, Acharya PS, Sen S (eds) Geospatial Infrastructure, Applications and Technologies: India Case Studies. Springer Singapore, Singapore, pp 31–44

  • Ellul C, Foord J, Mooney J (2013) Making metadata usable in a multi-national research setting. Appl Ergon 44:909–918. https://doi.org/10.1016/j.apergo.2012.10.014

    Article  Google Scholar 

  • FGDC (1998) FGDC-STD-001–1998. Content Standard for Digital Geospatial Metadata. Federal Geographic Data Committee, Reston, VA, USA

  • Florczyk AJ, López-Pellicer FJ, Nogueras-Iso J, Zarazaga-Soria FJ (2012) Automatic generation of geospatial metadata for web resources. Int J Spat Data Infrastructures Res 7:151–172. https://doi.org/10.2902/1725-0463.2012.07.art8

    Article  Google Scholar 

  • Foresman TW (2008) Evolution and implementation of the digital earth vision, technology and society. Int J Digit Earth 1:4–16. https://doi.org/10.1080/17538940701782502

    Article  Google Scholar 

  • Georgiadou Y, Puri SK, Sahay S (2005) Towards a potential research agenda to guide the implementation of Spatial Data Infrastructures—a case study from India. Int J Geogr Inf Sci 19:1113–1130. https://doi.org/10.1080/13658810500286950

    Article  Google Scholar 

  • Giuliani G, Ray N, Lehmann A (2013) Building regional capacities for GEOSS and INSPIRE: a journey in the Black Sea Catchment. Int J Adv Comput Sci Appl 3:19–27. https://doi.org/10.14569/SpecialIssue.2013.030302

  • Goldrei S, Kay J, Kummerfeld B (2005) Exploiting user models to automate the harvesting of metadata for learning objects. Proceeding of 2005 conference on Adaptive and intelligent Web-based educational systems (AIWBES’05). Málaga, Spain, pp 19–26

    Google Scholar 

  • Granell C, Fernández ÓB, Díaz L (2014) Geospatial information infrastructures to address spatial needs in health: collaboration, challenges and opportunities. Futur Gener Comput Syst 31:213–222. https://doi.org/10.1016/j.future.2013.04.002

    Article  Google Scholar 

  • Greenberg J (2005) Metadata generation: processes, people and tools. Bull Am Soc Inf Sci Technol 29:16–19. https://doi.org/10.1002/bult.269

    Article  Google Scholar 

  • Greenberg J, Spurgin K, Crystal A (2006) Functionalities for automatic metadata generation applications: a survey of metadata experts’ opinions. Int J Metadata, Semant Ontol 1: https://doi.org/10.1504/IJMSO.2006.008766

  • Huang Z, Xu Z (2011) A method of using geoserver to publish Economy Geographical Information. In: 2011 International Conference on Control, Automation and Systems Engineering, CASE 2011. IEEE, Singapore, Singapore, pp 1–4

  • Indian NSDI (2009) NSDI Metadata Standard Version 2.0. https://nsdiindia.gov.in/nsdi/nsdiportal/images/NSDIMetadataStandardVersion-2.0.pdf. Accessed 15 Aug 2017

  • ISRO (2001) National Spatial Data Infrastructure (NSDI)- Strategy and Action Plan. Bangalore

  • ISRO (2003) NSDI Metadata Standard- With Design of Prototype NSDI Metadata. P & PR UNIT, ISRO Headquarters, Bangalore

  • Ivánová I, Siao Him Fa J, McMeekin DA et al (2020) From spatial data to spatial knowledge infrastructure: a proposed architecture. Trans GIS 24:1526–1558. https://doi.org/10.1111/tgis.12656

    Article  Google Scholar 

  • Kalantari M, Syahrudin S, Rajabifard A, Hubbard H (2021) Synchronising spatial metadata records and interfaces to improve the usability of metadata systems. ISPRS Int J Geo-Information 10:393. https://doi.org/10.3390/ijgi10060393

    Article  Google Scholar 

  • Kalantari M, Olfat H, Rajabifard A (2010) Automatic spatial metadata enrichment: reducing metadata creation burden through spatial folksonomies. In: GSDI 12 World Conference: Realising Spatially Enabled Societies. Singapore

  • Klinkenberg B (2003) The true cost of spatial data in Canada. Can Geogr 47:37–49. https://doi.org/10.1111/1541-0064.02e11

    Article  Google Scholar 

  • Kokla M, Guilbert E (2020) A review of geospatial semantic information modeling and elicitation approaches. ISPRS Int J Geo-Information 9:146. https://doi.org/10.3390/ijgi9030146

    Article  Google Scholar 

  • Koutsomitropoulos DA (2019) Semantic annotation and harvesting of federated scholarly data using ontologies. Digit Libr Perspect 35:157–171. https://doi.org/10.1108/DLP-12-2018-0038

    Article  Google Scholar 

  • Lafia S, Jablonski J, Kuhn W et al (2016) Spatial discovery and the research library. Trans GIS 20:399–412. https://doi.org/10.1111/tgis.12235

    Article  Google Scholar 

  • Lehmann A, Giuliani G, Ray N et al (2014) Reviewing innovative Earth observation solutions for filling science-policy gaps in hydrology. J Hydrol 518:267–277. https://doi.org/10.1016/j.jhydrol.2014.05.059

    Article  Google Scholar 

  • Leyk S, Gaughan AE, Adamo SB et al (2019) Allocating people to pixels: a review of large-scale gridded population data products and their fitness for use. Earth Syst Sci Data Discuss 11:1385–1409. https://doi.org/10.5194/essd-2019-82

    Article  Google Scholar 

  • Ma J (2006) Managing metadata for digital projects. Libr Collect Acquis Tech Serv 30:3–17. https://doi.org/10.1080/14649055.2006.10766103

    Article  Google Scholar 

  • Martin P, Remy L, Theodoridou M et al (2019) Mapping heterogeneous research infrastructure metadata into a unified catalogue for use in a generic virtual research environment. Futur Gener Comput Syst 101:1–13. https://doi.org/10.1016/j.future.2019.05.076

    Article  Google Scholar 

  • Mohammed W (2014) Free and Open Source GIS: an overview on the recent evolution of projects, standards and communities. In: The 9th National GIS Symposium in Saudi Arabia. Dammam, Saudi Arabia, pp 1–13

  • Nebert D, Whiteside A, Vretanos P (2007) OpenGIS Catalogue Services (CSW) Specification. Wayland, MA

  • NeGD (2016) National eGovernance division Workshop Report on Use of GIS in Informed Planning & Decision Making. New Delhi

  • Obe RO, Hsu LS (2018) Compare SQL Server 2008 R2, Oracle 11G R2, Postgre SQL/PostGIS 1.5 spatial features. http://bostongis.com/PrinterFriendly.aspx?content_name=sqlserver2008r2_oracle11gr2_postgis15_compare. Accessed 12 Aug 2018

  • Olfat H, Kalantari M, Rajabifard A, Williamson I (2012) Towards a foundation for spatial metadata automation. J Spat Sci 57:65–81. https://doi.org/10.1080/14498596.2012.686361

    Article  Google Scholar 

  • Olfat H, Kalantari M, Rajabifard A et al (2013) A GML-based approach to automate spatial metadata updating. Int J Geogr Inf Sci 27:231–250. https://doi.org/10.1080/13658816.2012.678853

    Article  Google Scholar 

  • Pathan S, Yadav P, Jain G et al (2008) Conceptualisation, design and organisation of natural resources data base. Ahmedabad, India

    Google Scholar 

  • PostGreSQL (2018) PostgreSQL 7.4.30 Documentation

  • Puri SK (2006) Technological frames of stakeholders shaping the sdi implementation: a case study from India. Inf Technol Dev 12:311–331. https://doi.org/10.1002/itdj.20050

    Article  Google Scholar 

  • Rajabifard A, Williamson IP (2001) Spatial data infarstructures: concept, SDI hierarchies and future directions. In: Proceedings of GEOMATICS’80 Conference. Tehran, Iran, p 10

  • Rajabifard A, Williamson IP, Holland P, Johnstone G (2000) From local to global SDI initiatives: a pyramid of building blocks. In: 4th Global Spatial Data Infrastructure Conference, Cape Town, South Africa. pp 13–15

  • Rajabifard A, Kalantari M, Binns A (2009) SDI and metadata entry and updating tools. In: Proceedings of the GSDI 11 World Conference. Delft, pp 121–135

  • Singh PK (2009) Spatial data infrastructure in India: status, governance challenges, and strategies for effective functioning. Int J Spat Data Infrastructures Res 4:359–388. https://doi.org/10.2902/1725-0463.2009.04.art17

    Article  Google Scholar 

  • Song J, Di L (2017) Near-real-time OGC catalogue service for geoscience big data. ISPRS Int J Geo-Information 6: https://doi.org/10.3390/ijgi6110337

  • Specka X, Gärtner P, Hoffmann C et al (2019) The BonaRes metadata schema for geospatial soil-agricultural research data – Merging INSPIRE and DataCite metadata schemes. Comput Geosci 132:33–41. https://doi.org/10.1016/j.cageo.2019.07.005

    Article  Google Scholar 

  • Sun K, Zhu Y, Pan P et al (2019) Geospatial data ontology: the semantic foundation of geospatial data integration and sharing. Big Earth Data 3:269–296. https://doi.org/10.1080/20964471.2019.1661662

    Article  Google Scholar 

  • Taussi M (2007) Automatic production of metadata out of geographic datasets. Helsinki University of Technology, Espoo

    Google Scholar 

  • Ticheler J, Hielkema JU (2007) Geonetwork opensource internationally standardized distributed spatial information management. Osgeo J 2:1–6

    Google Scholar 

  • Trille S, Diaz L, Gil J, Huerta J (2013) Assisted generation and publication of geospatial data. Int J Spat Data Infrastruct Res 24–27

  • Tripathi AK, Agrawal S, Gupta RD (2019) WPS enabled SDI: an open source approach to provide geoprocessing in web environment. ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV-5/W2:119–126. 10.5194/isprs-annals-IV-5-W2-119-2019

  • Tripathi AK, Agrawal S, Gupta RD (2020a) Cloud enabled SDI architecture: a review. Earth Sci Informatics 13:211–231. https://doi.org/10.1007/s12145-020-00446-9

    Article  Google Scholar 

  • Tripathi AK, Agrawal S, Gupta RD (2020b) A conceptual framework of public health SDI. In: Ghosh JK, Silva I da (eds) Applications of Geomatics in Civil Engineering. Lecture Notes in Civil Engineering. Springer Singapore, Dehradun, India, pp 479–487

  • Vaduva A, Dittrich KR (2001) Metadata management for data warehousing: between vision and reality. In: Proceedings 2001 International Database Engineering and Applications Symposium. IEEE, Grenoble, France, pp 129–135

  • Vretanos PA (2005) OpenGIS Web Feature Service (WFS) implementation specification. Wayland, MA

  • Vukotic A, Goodwill J (2011) Introduction to Apache Tomcat. In: Apache Tomcat 7. Apress, Berkeley, CA, p 294

  • Wilkinson MD, Dumontier M, IjJ A et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  • Wohner C, Peterseil J, Poursanidis D et al (2019) DEIMS-SDR — a web portal to document research sites and their associated data. Ecol Inform 51:15–24. https://doi.org/10.1016/j.ecoinf.2019.01.005

    Article  Google Scholar 

  • Yue P, Gong J, Di L (2010) Augmenting geospatial data provenance through metadata tracking in geospatial service chaining. Comput Geosci 36:270–281. https://doi.org/10.1016/j.cageo.2009.09.002

    Article  Google Scholar 

  • Yue P, Gong J, Di L (2012) He L (2012) Automatic geospatial metadata generation for earth science virtual data products. GeoInformatica 16:1–29. https://doi.org/10.1007/s10707-011-0123-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Agrawal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Tripathi, A.K. & Gupta, R.D. Development and implementation of automatic metadata generation framework for SDI using OSS: a case study of Indian NSDI. Arab J Geosci 15, 408 (2022). https://doi.org/10.1007/s12517-022-09635-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09635-w

Keywords

Navigation