Skip to main content
Log in

The Aging as a Consequence of Diverse Biological Processes

  • Published:
Ageing International Aims and scope Submit manuscript

Abstract

There are many theories that have proposed in order to understand the aging process, and the interpretation of these theories does not reflect an unified concept. With aging, the loss of functional and developmental capacity is evidenced, this reflecting a loss of operational ability of different cells, which are unavailable to function under the gene and environment pressure. Among the mechanisms of homeodynamics, the repair and synthesis of DNA, the capacity to detect and depure proteins, lipids, organelles and defective cells, amongst others, are all well described. The process of homeodynamics also works to maintain proper immune function that is capable of defending against pathogens and recognizing self-antigens in order to prevent the development of autoimmunity and to maintain a controlled inflammatory response. Based on this fundamental concept of homeodynamics, it has been possible to explain the mechanisms that contribute to the process of aging, in contrast to the physiological maintenance of the different pathways (e.g., DNA damage, DNA errors, free radicals, mitochondrial damage, injury/cell insult and theories of immunosenescence) and how these same maintenance pathways cause cells to respond to different stressors with apoptosis, senescence and repair. In this article, we review the theories of apoptosis, senescence and cell repair within the context of their role in the normal aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. J., van de Sluis, B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.

    Article  Google Scholar 

  • Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2012). Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews, 3, CD007176.

    Google Scholar 

  • Bordone, L., & Guarente, L. (2015). Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Reviews. Molecular Cell Biology, 6(4), 298–305.

    Article  Google Scholar 

  • Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., et al. (1993). Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. The American Journal of Pathology, 143(6), 1699–1712.

    Google Scholar 

  • Chavakis, T., Bierhaus, A., & Nawroth, P. P. (2004). RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect Inst Pasteur, 6(13), 1219–1225.

    Article  Google Scholar 

  • Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A. Y., et al. (2009). Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Research Reviews, 8(1), 18–30.

    Article  Google Scholar 

  • Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. Lancet, 381(9868), 752–762.

    Article  Google Scholar 

  • Collier, C. A., Bruce, C. R., Smith, A. C., Lopaschuk, G., & Dyck, D. J. (2006). Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 291(1), E182–E189.

    Article  Google Scholar 

  • Deng, J. Y., Hsieh, P. S., Huang, J. P., Lu, L. S., & Hung, L. M. (2008). Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways. Diabetes, 57(7), 1814–1823.

    Article  Google Scholar 

  • Docherty, J. J., Sweet, T. J., Bailey, E., Faith, S. A., & Booth, T. (2006). Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Research, 72(3), 171–177.

    Article  Google Scholar 

  • Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology, 11(2), 98–107.

    Article  Google Scholar 

  • Eeles, E. M. P., White, S. V., O’Mahony, S. M., Bayer, A. J., & Hubbard, R. E. (2012). The impact of frailty and delirium on mortality in older inpatients. Age and Ageing, 41(3), 412–416.

    Article  Google Scholar 

  • Ettington, M. K. (2010). Physical immortality: a history and how to guide. The United States of America: Self Published.

    Google Scholar 

  • Fahlbusch, E., Vischer, L., Lochman, J. M., Mbiti, J. S., & Pelikan, J. (1998). The encyclopedia of Christianity. Michigan: Wm. B. Eerdmans Publishing Company.

    Google Scholar 

  • Fasth, A. E., Bjorkstrom, N. K., Anthoni, M., Malmberg, K. J., & Malmstrom, V. (2010). Activating NK-cell receptors co-stimulate CD4(+)CD28(−) T cells in patients with rheumatoid arthritis. European Journal of Immunology, 40(2), 378–387.

    Article  Google Scholar 

  • Fedarko, N. S. (2011). The biology of aging and frailty. Clinics in Geriatric Medicine, 27(1), 27–37.

    Article  Google Scholar 

  • Fontana, L., Meyer, T. E., Klein, S., & Holloszy, J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6659–6663.

    Article  Google Scholar 

  • Fort, A. T. (2011). State of the art in anti-aging trends. Clinics in Geriatric Medicine, 27(4), 507–522.

    Article  Google Scholar 

  • Franceschi, C., Monti, D., Scarfí, M. R., Zeni, O., Temperani, P., Emilia, G., et al. (1992). Genomic instability and aging. Studies in centenarians (successful aging) and in patients with Down’s syndrome (accelerated aging). Annals of the New York Academy of Sciences, 663, 4–16.

    Article  Google Scholar 

  • Freund, A., Orjalo, A. V., Desprez, P. Y., & Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine, 16(5), 238–246.

    Article  Google Scholar 

  • Fried, L. P., Xue, Q. L., Cappola, A. R., Ferrucci, L., Chaves, P., Varadhan, R., et al. (2009). Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(10), 1049–1057.

    Article  Google Scholar 

  • Gentilli, M., Mazoit, J. X., Bouaziz, H., Fletcher, D., Casper, R. F., Benhamou, D., et al. (2001). Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw. Life Sciences, 68(11), 1317–1321.

    Article  Google Scholar 

  • Haanen, C., & Vermes, I. (1996). Apoptosis: programmed cell death in fetal development. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 64(1), 129–133.

    Article  Google Scholar 

  • Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews. Immunology, 6(7), 508–519.

    Article  Google Scholar 

  • Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.

    Article  Google Scholar 

  • Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.

    Article  Google Scholar 

  • Herold, K., Moser, B., Chen, Y., Zeng, S., Yan, S. F., Ramasamy, R., et al. (2007). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. Journal of Leukocyte Biology, 82(2), 204–212.

    Article  Google Scholar 

  • Hohensinner, P. J., Goronzy, J. J., & Weyand, C. M. (2011). Telomere dysfunction, autoimmunity and aging. Aging Dis, 2(6), 524–537.

    Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196.

    Article  Google Scholar 

  • Hung, L. M., Chen, J. K., Huang, S. S., Lee, R. S., & Su, M. J. (2000). Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovascular Research, 47(3), 549–555.

    Article  Google Scholar 

  • Johnson, T. E. (2006). Recent results: biomarkers of aging. Experimental Gerontology, 41(12), 1243–1246.

    Article  Google Scholar 

  • Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.

    Article  Google Scholar 

  • Kirkwood, T. B., & Austad, S. N. (2000). Why do we age? Nature, 408(6809), 233–238.

    Article  Google Scholar 

  • Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes & Development, 24(22), 2463–2479.

    Article  Google Scholar 

  • Landenmark, H. K., Forgan, D. H., & Cockell, C. S. (2015). An estimate of the Total DNA in the biosphere. PLoS Biology. doi:10.1371/journal.pbio.1002168.

    Google Scholar 

  • Leicester, H. M. (1971). The historical background of chemistry. New York, NY: Dover Publications Inc..

    Google Scholar 

  • Leone, S., Cornetta, T., Basso, E., & Cozzi, R. (2010). Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Letters, 295(2), 167–172.

    Article  Google Scholar 

  • Lipsitz, L. A. (2002). Dynamics of stability: the physiologic basis of functional health and frailty. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(3), B115–B125.

    Article  Google Scholar 

  • Liuzzo, G., Goronzy, J. J., Yang, H., Kopecky, S. L., Holmes, D. R., Frye, F. R., et al. (2000). Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 101(25), 2883–2888.

    Article  Google Scholar 

  • Lloyd, D., Aon, M. A., & Cortassa, S. (2001). Why homeodynamics, not homeostasis? Scientific World Journal, 1, 133–145.

    Article  Google Scholar 

  • Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., et al. (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Medicine, 15(9), 1082–1087.

    Article  Google Scholar 

  • Miyoshi, N., Oubrahim, H., Chock, P. B., & Stadtman, E. R. (2006). Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1727–1731.

    Article  Google Scholar 

  • Mondello, C., & Scovassi, A. I. (2010). Apoptosis: a way to maintain healthy individuals. Sub-Cellular Biochemistry, 50, 307–323.

    Article  Google Scholar 

  • Muradian, K., & Schachtschabel, D. O. (2001). The role of apoptosis in aging and age-related disease: update. Z Für Gerontol Geriatr, 34(6), 441–446.

    Article  Google Scholar 

  • Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., et al. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. The Journal of Biological Chemistry, 267(21), 14998–15004.

    Google Scholar 

  • Ohtani, N., Yamakoshi, K., Takahashi, A., & Hara, E. (2004). The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. The Journal of Medical Investigation, 51(3–4), 146–153.

    Article  Google Scholar 

  • Olshansky, S. J., Carnes, B. A., & Cassel, C. (1990). In search of methuselah: estimating the upper limits to human longevity. Science, 250(4981), 634–640.

    Article  Google Scholar 

  • Orlova, V. V., Choi, E. Y., Xie, C., Chavakis, E., Bierhaus, A., Ihanus, E., et al. (2007). A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. The EMBO Journal, 26(4), 1129–1139.

    Article  Google Scholar 

  • Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A., et al. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. The Journal of Biological Chemistry, 27(9), 7370–7377.

    Article  Google Scholar 

  • Park, J. S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J. Y., Strassheim, D., et al. (2006). High mobility group box 1 protein interacts with multiple toll-like receptors. American Journal of Physiology. Cell Physiology, 290(3), C917–C924.

    Article  Google Scholar 

  • Phillips, D. R., & Kinsella, K. (2005). Global aging: the challenge of success. Wash Popul Ref Bur Popul Bull, 60(6), 5–42.

    Google Scholar 

  • Richter, C., Schweizer, M., Cossarizza, A., & Franceschi, C. (1996). Control of apoptosis by the cellular ATP level. FEBS Letters, 378(2), 107–110.

    Article  Google Scholar 

  • Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2004). A universal definition of life: autonomy and open-ended evolution. B Biosph Orig Life Evol, 34(3), 323–346.

    Article  Google Scholar 

  • Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., et al. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(30), 10220–10232.

    Article  Google Scholar 

  • Stanfel, M. N., Shamieh, L. S., Kaeberlein, M., & Kennedy, B. K. (2009). The TOR pathway comes of age. Biochimica et Biophysica Acta, 1790(10), 1067–1074.

    Article  Google Scholar 

  • Stewart, T. M., Bhapkar, M., Das, S., Galan, K., Martin, C. K., McAdams, L., et al. (2013). Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy Phase 2 (CALERIE Phase 2) screening and recruitment: methods and results. Contemporary Clinical Trials, 34(1), 10–20.

    Article  Google Scholar 

  • Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of Clinical Investigation, 123(3), 966–972.

    Article  Google Scholar 

  • Valenzano, DR., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., Cellerino, A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate, 16 (3), 296–300

  • Vlassara, H. (2005). Advanced glycation in health and disease: role of the modern environment. Annals of the New York Academy of Sciences, 1043, 452–460.

    Article  Google Scholar 

  • Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.

    Article  Google Scholar 

  • Wang, M., Zhang, J., Jiang, L. Q., Spinetti, G., Pintus, G., Monticone, R., et al. (2007). Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension, 50(1), 219–227.

    Article  Google Scholar 

  • Weng, N. P., Akbar, A., & Goronzy, J. (2009). CD28(−) T cells: their role in the age-associated decline of immune function. Trends in Immunology, 30(7), 306–312.

    Article  Google Scholar 

  • Weyand, C. M., Fulbright, J. W., & Goronzy, J. J. (2003). Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 38(8), 833–841.

    Article  Google Scholar 

  • Winder, W. W., & Hardie, D. G. (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. The American Journal of Physiology, 277(1 Pt 1), E1–10.

    Google Scholar 

  • Witte, A. V., Fobker, M., Gellner, R., Knecht, S., & Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1255–1260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel J. Tobón.

Ethics declarations

Conflict of Interest

Nicolas Coronel Restrepo declares that he has no conflict of interest. Fabio Bonilla Abadía declares that he has no conflict of interest. Andres Agualimpia declares that he has no conflict of interest. Andrés F. Echeverri declares that he has no conflict of interest. Fabio E. Ospina declares that he has no conflict of interest. Carlos A. Cañas declares that he has no conflict of interest. Gabriel J. Tobón declares that he has no conflict of interest.

Informed Consent

As there is no person or personal data appearing in the paper, there is no one from whom a permission should be obtained in order to publish personal data.

Ethical Treatment of Experimental Subjects (Animal and Human)

This article does not contain any studies, performed by any of the authors, with human or animal participants and, as such, did not require ethical approval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronel-Restrepo, N., Bonilla-Abadía, F., Agualimpia, A. et al. The Aging as a Consequence of Diverse Biological Processes. Ageing Int 41, 265–282 (2016). https://doi.org/10.1007/s12126-016-9247-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12126-016-9247-5

Keywords

Navigation