Skip to main content

Advertisement

Log in

Cellular senescence: a view throughout organismal life

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cellular senescence is the final fate of most cells in response to specific stimuli, but is not the end. Indeed, it is the beginning of a singular life, with multiple side roads leading to diverse effects on the organism. Many studies have been done in the last few years to elucidate the intriguing role of senescent cells in the organism, demonstrating them as the cause of several age-related diseases. However, these cells are also positively implicated in other important pathways, such as embryogenesis and wound healing. It appears that the multiple effects are time-dependent: long-term senescence is mostly implicated in chronic inflammation and disease, whereas in the short term, senescent cells seem to be beneficial, being rapidly targeted by the innate immune system. The influence of senescent cells on their neighbors by paracrine factors, differential activity depending on developmental stage, and duration of the effects make the cellular senescent program a unique spatial–temporal mechanism. During pathological conditions such as progeroid syndromes, this mechanism is deregulated, leading to accelerated onset of some aging-related diseases and a shorter lifespan, among other physiological defects. Here, we review the three primary cell senescence programs described so far (replicative, stress-induced, and developmentally programmed senescence), their onset during development, and their potential roles in diseases with premature aging. Finally, we discuss the role of immune cells in keeping senescence burden below the threshold of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169:1000–1011. https://doi.org/10.1016/j.cell.2017.05.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  4. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448

    Article  PubMed  CAS  Google Scholar 

  5. Greider CW (1998) Telomeres and senescence: the history, the experiment, the future. Curr Biol 8(5):178–181

    Article  Google Scholar 

  6. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365. https://doi.org/10.1038/ncb2466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. https://doi.org/10.1038/nrm2233

    Article  PubMed  CAS  Google Scholar 

  8. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233. https://doi.org/10.1016/j.cell.2007.07.003

    Article  PubMed  CAS  Google Scholar 

  9. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435. https://doi.org/10.1038/nm.4000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen Q, Ames BN (1994) Senescent-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 91:4130–4134

    Article  PubMed  CAS  Google Scholar 

  11. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature senescence associated with accumulation of p53 and p16Ink4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  12. Hernández-Segura A, Nehme J, De Maria M (2018) Hallmarks of cellular senescence. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2018.02.001

    Article  PubMed  Google Scholar 

  13. Bielak-Zmijewska A, Mosieniak G, Sikora E (2017) Is DNA damage indispensable for stress-induced senescence? Mech Ageing Dev. https://doi.org/10.1016/j.mad.2017.08.004

    Article  PubMed  Google Scholar 

  14. Ott C, Jung T, Grune T, Höhn A (2017) SIPS as a model to study age-related changes in proteolysis and aggregate formation. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2017.07.007

    Article  PubMed  Google Scholar 

  15. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1–15. https://doi.org/10.1016/j.cell.2013.10.019

    Article  CAS  Google Scholar 

  16. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130. https://doi.org/10.1016/j.cell.2013.10.041

    Article  PubMed  CAS  Google Scholar 

  17. Cox LS, Redman C (2017) The role of cellular senescence in ageing of the placenta. Placenta 52:139–145

    Article  PubMed  CAS  Google Scholar 

  18. Chuprin A, Gal H, Biron-Shental T, Biran A, Amiel A, Rozenblatt S, Krizhanovsky V (2013) Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 27:2356–2366. https://doi.org/10.1101/gad.227512.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rajagopalan S, Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci USA 109:20596–20601

    Article  PubMed  CAS  Google Scholar 

  20. Helman A, Klochendler A, Azazmeh N, Gabai Y, Horwitz E, Anzi S, Swisa A, Condiotti R, Granit RZ, Nevo Y, Fixler Y, Shreibman D, Zamir A, Tornovsky-Babeay S, Dai C, Glaser B, Powers AC, Shapiro AM, Magnuson MA, Dor Y, Ben-Porath I (2016) p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 22(4):412–422. https://doi.org/10.1038/nm.4054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Aguayo-Mazzucato C, van Haaren M, Mruk M, Lee TB Jr, Crawford C, Hollister-Lock J, Sullivan BA, Johnson JW, Ebrahimi A, Dreyfuss JM, Van Deursen J, Weir GC, Bonner-Weir S (2017) β cell aging markers have heterogeneous distribution and are induced by insulin resistance. Cell Metab 25:898–910. https://doi.org/10.1016/j.cmet.2017.03.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rapisarda V, Borghesan M, Miguela V, Encheva V, Snijders AP, Lujambio A, O’Loghlen A (2017) Integrin beta 3 regulates cellular senescence by activating the TGF-β pathway. Cell Rep 18:2480–2493. https://doi.org/10.1016/j.celrep.2017.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496. https://doi.org/10.1038/nrm3823

    Article  PubMed  CAS  Google Scholar 

  24. Besancenot R, Chaligne R, Tonetti C, Pasquier F, Marty C, Lecluse Y, Vainchenker W, Constantinescu SN, Giraudier S (2010) A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. 8(9):e1000476. https://doi.org/10.1371/journal.pbio.1000476

    Article  CAS  Google Scholar 

  25. Katsuumi G, Shimizu I, Yoshida Y, Minamino T (2018) Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med 5:18. https://doi.org/10.3389/fcvm.2018.00018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004. https://doi.org/10.1111/j.1474-9726.2012.00870.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323. https://doi.org/10.1111/j.1474-9726.2009.00481.x

    Article  PubMed  CAS  Google Scholar 

  28. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  PubMed  CAS  Google Scholar 

  29. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128(1):36–44

    Article  PubMed  CAS  Google Scholar 

  30. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. https://doi.org/10.1371/journal.pbio.0060301

    Article  PubMed  CAS  Google Scholar 

  32. Ito Y, Hoare M, Narita M (2017) Spatial and temporal control of senescence. Trends in Cell Biol. https://doi.org/10.1016/j.tcb.2017.07.004

    Article  Google Scholar 

  33. Taniguchi K, Kohsaka H, Inoue N, Terada Y, Ito H, Hirokawa K, Miyasaka N (1999) Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med 5:760–767. https://doi.org/10.1038/10480

    Article  PubMed  CAS  Google Scholar 

  34. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medranos EE, Linskens M, Rubelj I, Pereire-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  35. Sharpless NE, DePinho R (2005) Crime and punishment. Nature 436:636. https://doi.org/10.1038/436636a

    Article  PubMed  CAS  Google Scholar 

  36. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28(2):99–114. https://doi.org/10.1101/gad.235184.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D, Kastrinakis NG, Pouli N, Marakos P, Townsend P, Serrano M, Bartek J, Gorgoulis VG (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16(1):192–197. https://doi.org/10.1111/acel.12545

    Article  PubMed  CAS  Google Scholar 

  38. Galbiati A, Beauséjour C, d’Adda di Fagagna F (2017) A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell 16(2):422–427. https://doi.org/10.1111/acel.12573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rajagopalan S (2014) HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol 11:460–466. https://doi.org/10.1038/cmi.2014.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vicente R, Mausset-Bonnefont AL, Jorgensen C, Louis-Plence P, Brondello JM (2016) Cellular senescence impact on immune cell fate and function. Aging Cell 15:400–406. https://doi.org/10.1111/acel.12455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev 7:93–102

    Article  CAS  Google Scholar 

  42. Cormier S, Vandormael-Pournin S, Babinet C, Cohen-Tannoudji M (2004) Developmental expression of the Notch signaling pathway genes during mouse preimplantation development. Genes Expr Patterns 4:713–717. https://doi.org/10.1016/j.modgep.2004.04.003

    Article  CAS  Google Scholar 

  43. Chiche A, Le Roux I, von Joest M, Sakai H, Aguín SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, Tajbakhsh S, Li H (2017) Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20:407–414. https://doi.org/10.1016/j.stem.2016.11.020

    Article  PubMed  CAS  Google Scholar 

  44. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10(12):945–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733. https://doi.org/10.1016/j.devcel.2014.11.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK, Nevzorova YA, Liedtke C, Weiskirchen R (2014) The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta 1843:902–914. https://doi.org/10.1016/j.bbamcr.2014.01.023

    Article  PubMed  CAS  Google Scholar 

  47. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735. https://doi.org/10.1038/nrd.2017.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rao SG, Jackson JG (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2(11):676–687

    Article  PubMed  Google Scholar 

  49. Du J, Klein JD, Hassounah F, Zhang J, Zhang C, Wang XH (2014) Aging increases CCN1 expression leading to muscle senescence. Am J Physiol Cell Physiol 306:28–36. https://doi.org/10.1152/ajpcell.00066.2013

    Article  CAS  Google Scholar 

  50. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS One. https://doi.org/10.1371/journal.pone.0147198

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A, Chernova OB, Gudkov AV (2016) Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8(7):1294–1315. https://doi.org/10.18632/aging.100991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Burton DGA, Krizhanovsky V (2014) Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 71:4373–4386. https://doi.org/10.1007/s00018-014-1691-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. McHugh D, Gil J (2017) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65–77. https://doi.org/10.1083/jcb.201708092

    Article  PubMed  CAS  Google Scholar 

  54. Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574. https://doi.org/10.1038/33345

    Article  PubMed  CAS  Google Scholar 

  55. World Health Organization (2018) Global Health Observatory (GHO) data. https://www.who.int/gho/mortality_burden_disease/en/

  56. Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, Johnson FB, Trojanowski JQ, Sell C, Torres C (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7(9):e45069. https://doi.org/10.1371/journal.pone.0045069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK (2013) Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease? J Intern Med 273(5):429–436. https://doi.org/10.1111/joim.12029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–1899. https://doi.org/10.1038/nature16932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBiomedicine 21:21–28. https://doi.org/10.1016/j.ebiom.2017.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  60. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354(6311):472–477. https://doi.org/10.1126/science.aaf6659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ahmed MS, Ikran S, Bibi N, Mir A (2017) Hutchinson–Gilford progeria syndrome: a premature aging disease. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0610-7

    Article  PubMed  Google Scholar 

  62. Larizza L, Roversi G, Volpi L (2010) Rothmund–Thomson syndrome. Orphanet J Rare Dis. https://doi.org/10.1186/1750-1172-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  63. Coppede F (2012) Premature aging syndrome. Neurodegenerative Dis. Landes Bioscience and Springer Science + Business Media, New York, pp 317–331

    Google Scholar 

  64. Oshima J, Sidorova JM, Monnat RJ Jr (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114. https://doi.org/10.1016/j.arr.2016.03.002

    Article  PubMed  CAS  Google Scholar 

  65. Halaschek-Wiener J, Brooks-Wilson A (2007) Progeria of stem cells: stem cell exhaustion in Hutchinson–Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 1:3–8

    Article  Google Scholar 

  66. Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF, Bohr VA (2008) The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124:369–377. https://doi.org/10.1007/s00439-008-0562-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lu H, Fang EF, Sykora P, Kulikowicz T, Zhang Y, Becker KG, Croteau DL, Bohr VA (2014) Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice. Cell Death Dis. https://doi.org/10.1038/cddis.2014.168

    Article  PubMed  PubMed Central  Google Scholar 

  68. Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24(5):791–802

    Article  PubMed  CAS  Google Scholar 

  69. Hilhorst-Hofstee Y, Shah N, Atherton D, Harper JI, Milla P, Winter RM (2000) Radial aplasia, poikiloderma and auto-immune enterocolitis–new syndrome or severe form of Rothmund–Thomson syndrome? Clin Dysmorphol 9(2):79–85

    Article  PubMed  CAS  Google Scholar 

  70. Gordon CM, Gordon LB, Snyder BD, Nazarian A, Quinn N, Huh S, Giobbie-Hurder A, Neuberg D, Cleveland R, Kleinman M, Miller DT, Kieran MW (2011) Hutchinson–Gilford progeria is a skeletal dysplasia. J Bone Miner Res 26(7):1670–1679. https://doi.org/10.1002/jbmr.392

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu L, Liu H, Yan M, Yang J, Long F, Muneoka K, Chen Y (2007) Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Dev Biol 306(2):549–559. https://doi.org/10.1016/j.ydbio.2007.03.518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tiecke E, Bangs F, Blaschke R, Farrell ER, Rappold G, Tickle C (2006) Expression of the short stature homeobox gene Shox is restricted by proximal and distal signals in chick limb buds and affects the length of skeletal elements. Dev Biol 298:585–596. https://doi.org/10.1016/j.ydbio.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  73. Rosengardten Y, McKenna T, Grochová D, Eriksson M (2011) Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10:1011–1020. https://doi.org/10.1111/j.1474-9726.2011.00743.x

    Article  PubMed  CAS  Google Scholar 

  74. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Investig 113(3):370–378. https://doi.org/10.1172/JCI19670

    Article  PubMed  CAS  Google Scholar 

  75. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136. https://doi.org/10.1101/gad.17276711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Turaga RV, Paquet ER, Sild M, Vignard J, Garand C, Johnson FB, Masson JY, Lebel M (2009) The Werner syndrome protein affects the expression of genes involved in adipogenesis and inflammation in addition to cell cycle and DNA damage responses. Cell Cycle 8(13):2080–2092. https://doi.org/10.4161/cc.8.13.8925

    Article  PubMed  CAS  Google Scholar 

  77. Davis T, Kipling D (2006) Werner Syndrome as an example of inflamm-aging: possible therapeutic opportunities for a progeroid syndrome? Rejuvenation Res. 9(3):402–407. https://doi.org/10.1089/rej.2006.9.402

    Article  PubMed  CAS  Google Scholar 

  78. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459. https://doi.org/10.1038/ncb1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yeong EK, Yang CC (2004) Chronic ulcers in Werner’s syndrome. Br Assoc Plast Surg 57:86–88. https://doi.org/10.1016/j.bjps.2003.10.011

    Article  CAS  Google Scholar 

  80. Goldstein S, Moerman EJ, Fujii S, Sobel BE (1994) Overexpression of plasminogen activator inhibitor type-1 in senescent fibroblasts from normal subjects and those with Werner syndrome. J Cell Physiol 161(3):571–579

    Article  PubMed  CAS  Google Scholar 

  81. Wollina U, Gruner M, Koch A, Köstler E, Hubl W, Hanson NB, Oshima J (2004) Topical PDGF-BB results in limited healing in a patient with Werner’s syndrome and chronic leg ulcers. J Wound Care 13(10):415–416. https://doi.org/10.12968/jowc.2004.13.10.26690

    Article  PubMed  CAS  Google Scholar 

  82. Park JH, Kim JY, Kim DJ, Kim M, Chang M, Chuck RS, Park CY (2017) Effect of nitric oxide on human corneal epithelial cell viability and corneal wound healing. Sci Rep 7:8093. https://doi.org/10.1038/s41598-017-08576-9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yamasaki K, Edington HD, McClosky C, Tzeng E, Lizonova A, Kovesdi I, Steed DL, Billiar TR (1998) Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Investig 101(5):967–971. https://doi.org/10.1172/JCI2067

    Article  PubMed  CAS  Google Scholar 

  84. Kim JC, Cheong TB, Park GS, Park MH, Kwon NS, Yoon HY (2002) The role of nitric oxide in ocular surface diseases. Adv Exp Med Biol 506:687–695

    Article  PubMed  CAS  Google Scholar 

  85. Butala P, Szpalski C, Soares M, Davidson EH, Knobel D, Warren SM (2012) Zmpste24−/− mouse model for senescent wound healing research. Plast Reconstr Surg 130(6):788–798. https://doi.org/10.1097/PRS.0b013e31826d102b

    Article  CAS  Google Scholar 

  86. Huang S, Chen L, Libina N, Janes J, Martin GM, Campisi J, Oshima J (2005) Correction of cellular phenotypes of Hutchinson–Gilford Progeria cells by RNA interference. Hum Genet 118:444–450. https://doi.org/10.1007/s00439-005-0051-7

    Article  PubMed  CAS  Google Scholar 

  87. Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9(12):1173–1182

    Article  PubMed  CAS  Google Scholar 

  88. Ovadya Y, Krizhanovsky V (2014) Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 15:627–642. https://doi.org/10.1007/s10522-014-9529-9

    Article  PubMed  CAS  Google Scholar 

  89. Li S, Chen X, Lai W, Hu M, Zhong X, Tan S, Liang H (2017) Downregulation of SMP30 in senescent human lens epithelial cells. Mol Med Rep 16(4):4022–4028. https://doi.org/10.3892/mmr.2017.7106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang ZF, Zhang J, Hui YN, Zheng MH, Liu XP, Kador PF, Wang YS, Yao LB, Zhou J (2011) Up-regulation of NDRG2 in senescent lens epithelial cells contributes to age-related cataract in human. PLoS One 6(10):e26102. https://doi.org/10.1371/journal.pone.0026102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Fu Q, Qin Z, Yu J, Yu Y, Tang Q, Lyu D, Zhang L, Chen Z, Yao K (2016) Effects of senescent lens epithelial cells on the severity of age-related cortical cataract in humans: a case-control study. Medicine (Baltimore). https://doi.org/10.1097/MD.0000000000003869

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pagano G, Zatterale A, Degan P, d’Ischia M, Kelly FJ, Pallardó FV, Kodama S (2005) Multiple involvement of oxidative stress in Werner syndrome phenotype. Biogerontology 6(4):233–243. https://doi.org/10.1007/s10522-005-2624-1

    Article  PubMed  CAS  Google Scholar 

  93. von Kobbe C, May A, Grandori C, Bohr VA (2004) Werner syndrome cells escape hydrogen peroxide-induced cell proliferation arrest. FASEB J. https://doi.org/10.1096/fj.04-1895fje

    Article  Google Scholar 

  94. von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23(23):8601–8613

    Article  Google Scholar 

  95. Coutinho HDM, Falcão-Silva VS, Gonçalves GF, da Nóbrega RB (2009) Molecular ageing in progeroid syndromes: Hutchinson–Gilford progeria syndrome as a model. Immun Ageing. https://doi.org/10.1016/j.arr.2016.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cox LS (2008) Hypothesis: causes of type 2 diabetes in progeroid Werner syndrome. Open Longev Sci 2:100–103

    Article  CAS  Google Scholar 

  97. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083. https://doi.org/10.1016/S0140-6736(13)62154-6

    Article  PubMed  CAS  Google Scholar 

  98. de Renty C, Ellis NA (2017) Bloom’s syndrome: why not premature aging? A comparison of the BLM and WRN helicases. Ageing Res Rev 33:36–51. https://doi.org/10.1016/j.arr.2016.05.010

    Article  PubMed  CAS  Google Scholar 

  99. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882. https://doi.org/10.1038/ng1389

    Article  PubMed  CAS  Google Scholar 

  100. Moore G, Knoblaugh S, Gollahon K, Rabinovitch P, Ladiges W (2008) Hyperinsulinemia and insulin resistance in Wrn null mice fed a diabetogenic diet. Mech Ageing Dev 129(4):201–206. https://doi.org/10.1016/j.mad.2007.12.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Burton DGA, Stolzing A (2018) Cellular senescence: immunosurveillance and future immunotherapy. Aging Res Rev 48:17–25. https://doi.org/10.1016/j.arr.2018.02.001

    Article  CAS  Google Scholar 

  102. Mocchegiani E, Malavolta M (2004) NK and NKT cell functions in immunosenescence. Aging Cell 3(4):177–184. https://doi.org/10.1111/j.1474-9728.2004.00107.x

    Article  PubMed  CAS  Google Scholar 

  103. Campos C, Pera A, Lopez-Fernandez I, Alonso C, Tarazona R, Solana R (2014) Proinflammatory status influences NK cells subsets in the elderly. Immunol Lett 162:298–302. https://doi.org/10.1016/j.imlet.2014.06.015

    Article  PubMed  CAS  Google Scholar 

  104. Shimaoka H, Takeno S, Maki K, Sasaki T, Hasegawa S, Yamashita Y (2017) A cytokine signal inhibitor for rheumatoid arthritis enhances cancer metastasis via depletion of NK cells in an experimental lung metastasis mouse model of colon cancer. Oncol Lett 14(3):3019–3027. https://doi.org/10.3892/ol.2017.6473

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A (2016) Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol 46(10):2286–2301. https://doi.org/10.1002/eji.201546178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Frasca D, Diaz A, Romero M, Blomberg BB (2017) Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol 87:113–120. https://doi.org/10.1016/j.exger.2016.12.001

    Article  PubMed  CAS  Google Scholar 

  107. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211:144–156. https://doi.org/10.1002/path.2104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Akbar AN, Henson SM, Lanna A (2016) Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol 37:866–876. https://doi.org/10.1016/j.it.2016.09.002

    Article  PubMed  CAS  Google Scholar 

  109. Gordon S, Plüddemann A (2017) Tissue macrophages: heterogeneity and functions. BMC Biol 15:53. https://doi.org/10.1186/s12915-017-0392-4

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW (2016) Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139:653–661. https://doi.org/10.1093/brain/awv395

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wu CL, McNeill J, Goon K, Little D, Kimmerling K, Huebner J, Kraus V, Guilak F (2017) Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage Fas-induced apoptosis–transgenic mice. Arthritis Rheumatol 69(9):1772–1783. https://doi.org/10.1002/art.40161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Burnett SH, Beus BJ, Avdiushko R, Qualls J, Kaplan AM, Cohen DA (2006) Development of peritoneal adhesions in macrophage depleted mice. J Surg Res 131(2):296–301. https://doi.org/10.1016/j.jss.2005.08.026

    Article  PubMed  CAS  Google Scholar 

  113. Yun MH, Davaapil H, Brockes JP (2015) Recurrent turnover of senescent cells during regeneration of a complex structure. eLife. https://doi.org/10.7554/elife.05505

    Article  PubMed  PubMed Central  Google Scholar 

  114. Simkin J, Gawriluk TR, Gensel JC, Seifert AW (2017) Macrophages are necessary for epimorphic regeneration in African spiny mice. eLife. https://doi.org/10.7554/elife.24623

    Article  PubMed  PubMed Central  Google Scholar 

  115. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110(23):9415–9420. https://doi.org/10.1073/pnas.1300290110

    Article  PubMed  Google Scholar 

  116. Petrie TA, Strand NS, Tsung-Yang C, Rabinowitz JS, Moon RT (2014) Macrophages modulate adult zebrafish tail fin regeneration. Development 141:2581–2591. https://doi.org/10.1242/dev.098459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin P, Leutz A, Berruyer C, Sieweke MH (2017) SIRT1 regulates macrophage self-renewal. EMBO J 36(16):2353–2372. https://doi.org/10.15252/embj.201695737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1038/ni.1937

    Article  PubMed  CAS  Google Scholar 

  119. Peeper DS (2011) Old cells under attack. Nature 479:186–187. https://doi.org/10.1038/479186a

    Article  PubMed  CAS  Google Scholar 

  120. Xin L, Jiang TT, Kinder JM, Ertelt JM, Way SS (2015) Infection susceptibility and immune senescence with advancing age replicated in accelerated aging LmnaDhe mice. Aging Cell 14:1122–1126. https://doi.org/10.1111/acel.12385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liu B, Zhou S, Liu X, Zhou K, Zhang F, Zhou Z (2013) Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. Longev Healthspan. https://doi.org/10.1186/2046-2395-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mosteiro L, Pantoja C, de Martino A, Serrano M (2018) Senescence promotes in vivo reprogramming through p16INK4a and Il-6. Aging Cell 17:e12711. https://doi.org/10.1111/acel.12711

    Article  CAS  Google Scholar 

  123. Velarde MC, DeMaria M (2016) Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology 62(5):513–518. https://doi.org/10.1159/000444877

    Article  PubMed  CAS  Google Scholar 

  124. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IJcken WF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–147. https://doi.org/10.1016/j.cell.2017.02.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

I am grateful to Carlos López-Otín, Patricia L. Opresko, Ignacio Flores, and Jeanine Harrigan for their helpful comments on the manuscript. I also thank Adrián V. and Victoria C. for their productive discussions and support. The professional editing service NB Revisions was used for technical editing of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cayetano von Kobbe.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Kobbe, C. Cellular senescence: a view throughout organismal life. Cell. Mol. Life Sci. 75, 3553–3567 (2018). https://doi.org/10.1007/s00018-018-2879-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2879-8

Keywords

Navigation