Skip to main content

Advertisement

Log in

The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein–Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

8-OHdG:

8-Hydroxydeoxyguanosine

Akap9:

A-kinase anchoring protein 9

Akt:

Ak strain transforming

AluYb8:

Jumping gene AluYb element 8

APC:

Adenomatous polyposis coli

Arap2:

Ankyrin repeat and pH domain 2

ARID2:

AT-rich interaction domain 2

ATRX:

A-thalassemia mental retardation X-linked protein

Bcl-2:

B-cell leukemia/lymphoma 2 protein

BRAF:

Serine/threonine-protein kinase B-Raf

CASP8:

Cysteinyl aspartate protease

CD59:

Protectin

CD8 + T:

Cluster of Differentiation 8 T-cell receptor

CDH1:

E-cadherin 1

Cdh11:

Cadherin 11

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

CpGIs:

CpG islands

CREBBP:

Cyclic adenosine monophosphate response element-binding protein binding protein

CSMD3:

CUB and Sushi multiple domain 3

CSp8:

Caspase 8

CTNNB1’S:

Catenin beta 1

DAPK1:

Death-associated protein kinase 1

DNA:

Deoxyribonucleic acid

DNMTs:

DNA methyltransferases

dsDNA:

Double-stranded DNA

E2F:

E2 factor

EBNA:

Epstein–Barr nuclear antigen 1

EBV:

Epstein–Barr virus

EGFR3:

Epidermal growth factor receptor 3

Ep300:

E1A-binding protein P300

ERK-MAPK:

Extracellular signal-regulated kinase

ESI:

Electrospray ionization

FANCD2:

FA complementation group D2

FAT1:

FAT atypical cadherin 1

FAT2:

FAT atypical cadherin 2

Fgf3:

Fibroblast growth factor 3

FGFR:

Fibroblast growth factor receptor

GATA4:

GATA-binding protein 4

GATS:

Global adult tobacco survey

Hjurp:

Holiday junction recognition protein

HPV:

Human papilloma virus

H-ras:

Harvey rat sarcoma virus

IARC:

International agency for research on cancer

IgA:

Immunoglobulin A

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

IL-8:

Interleukin-8

in-NETO1-1:

Neuropilin and tolloid-like 1

ISH:

In-situ hybridization

IT-MS:

Ion trap-mass spectroscopy

JAK-STAT:

Janus kinase-signal transducer and activator of transcription

JNK:

Jun N-terminal kinase

KMT2A:

Lysine methyltransferase 2A

KMT2D:

Lysine methyltransferase 2D

K-ras:

Kirsten rat sarcoma viral oncogene homolog

LINE1:

Long interspersed nuclear element 1

LMP-1:

Latent membrane protein 1

lncPSD4-1:

Long non-coding RNA PSD4-1

LRE1:

Line retro-transposable element 1

LRP1B:

LDL receptor-related protein 1B

M2BP:

Mac-2-binding protein

MDM2:

Murine double minute 2

MEF2A:

Myocyte enhancer factor 2A

MGMT:

O-6-methyl-DNA transferase

miR-181:

Micro-RNA- 181

miR-196b:

Micro-RNA 196b

miR-30a:

Micro-RNA 30a

miR-934:

Micro-RNA 934

miRNAs:

Micro-RNAs

MLH1:

MutL homolog 1

MMP9:

Matrix metalloproteinase 9

MRP14:

Migration inhibitory factor-related protein 14

mTOR:

Mammalian target of rapamycin

Muc4:

Mucin 4, Cell surface-associated

Muc6:

Mucin 6, oligomeric mucus/gel-forming

MYH1:

Myosin heavy chain

NAB:

Nitrosoanabasine

NAT:

Nitrosoanatabine

NF1:

Neurofibromatosis type 1

NF-kB:

Nuclear factor kappa B

NNAL:

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (3-pyridyl)-1- butanol

NNK:

4-Methyl nitrosamino 1,3-pyridyl butanone

NNN:

Nitrosonornicotine

NOTCH1:

Neurogenic locus notch homolog protein 1

N-ras:

Neuroblastoma RAS viral oncogene homolog

NSD1:

Nuclear receptor-binding SET domain protein 1

OSCC:

Oral squamous cell carcinoma

P14(ARF):

Tumor suppressor protein 14 alternative reading frame

P15INK4B:

Cyclin-dependent kinase 4 inhibitor B

P16:

Protein 16

P16NK4A:

P16 Cyclin-dependent kinase inhibitor 4A

P53:

Protein 53

PABPC1:

Poly (A)-binding protein cytoplasmic 1

PCR:

Polymerase chain reaction

PI3K:

Phosphatidylinositol-3-kinase

PTEN:

Phosphate and TENsin homolog deleted on chromosome 10

QqQ-MS:

Triple quadrupole-mass spectroscopy

RARB2:

Retinoic acid receptor beta 2

RASSF1/2:

Ras association domain containing protein 1

Rb:

Retinoblastoma

RB1:

Retinoblastoma 1

RNA:

Ribonucleic acid

ROS:

C-ros oncogene 1

RT-PCR:

Reverse transcriptase polymerase chain reaction

SLT:

Smokeless tobacco

SMARCA4:

Swi/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4

SOX17:

SRY-box transcription factor 17

Sp110:

Sp110 nuclear body protein

Sp140:

Sp140 nuclear body protein

STAG2:

Stromal antigen 2

TCGA:

The cancer genome atlas

TFPI2:

Tissue factor pathway inhibitor 2

TKTL1:

Transketolase-like-1

TLR9:

Toll-like receptor 9

TNF:

Tumor necrosis factor

TP53:

Tumor protein p53

TSC2:

Tuberous sclerosis complex

TSNA:

Tobacco-specific N-nitrosamination

VHL:

Von Hippel–Lindau syndrome

Wnt:

Wingless-related integration site

ZFHX3:

Zinc finger homeobox 3

References

  1. Ren ZH, Hu CY, He HR, Li YJ, Lyu J. Global and regional burdens of oral cancer from 1990 to 2017: results from the global burden of disease study. Cancer Commun. 2020;40:81–92. https://doi.org/10.1002/cac2.12009.

    Article  Google Scholar 

  2. Saxena R, Vishnu Prasoodanan PK, Gupta SV, Gupta S, Waiker P, Samaiya A, et al. Assessing the effect of smokeless tobacco consumption on oral microbiome in healthy and oral cancer patients. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/FCIMB.2022.841465/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sharma S, Satyanarayana L, Asthana S, Shivalingesh KK, Goutham BS, Ramachandra S. Oral cancer statistics in India on the basis of first report of 29 population-based cancer registries. J Oral Maxillofac Pathol. 2018;22:18. https://doi.org/10.4103/JOMFP.JOMFP_113_17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shaikh R, Janssen F, Vogt T. The progression of the tobacco epidemic in India on the national and regional level, 1998–2016. BMC Public Health. 2022. https://doi.org/10.1186/S12889-021-12261-Y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra GA, Pimple SA, Shastri SS. An overview of the tobacco problem in India. Indian J Med Paediatr Oncol. 2012;33:139. https://doi.org/10.4103/0971-5851.103139.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Asthana S, Patil RS, Labani S. Tobacco-related cancers in India: a review of incidence reported from population-based cancer registries. Indian J Med Paediatr Oncol. 2016;37:152. https://doi.org/10.4103/0971-5851.190357.

    Article  PubMed  PubMed Central  Google Scholar 

  7. About | Global Adult Tobacco Survey 2, India 2016–17—Research Project n.d. https://www.tiss.edu/view/11/research-projects/global-adult-tobacco-survey-round-2-for-india-2016/. Accessed 28 April 2022

  8. 2020 WHOIA for R on C (IARC) G. Population Fact Sheets 2020

  9. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. https://doi.org/10.1002/IJC.29210.

    Article  CAS  PubMed  Google Scholar 

  10. Curado MP, Johnson NW, Kerr AR, Silva DRME, Lanfranchi H, Pereira DL, et al. Oral and oropharynx cancer in South America: incidence, mortality trends and gaps in public databases as presented to the Global Oral Cancer Forum. Transl Res Oral Oncol. 2016;1:2057178X1665376. https://doi.org/10.1177/2057178X16653761.

    Article  Google Scholar 

  11. Gupta B, Ariyawardana A, Johnson NW. Oral cancer in India continues in epidemic proportions: evidence base and policy initiatives. Int Dent J. 2013;63:12–25. https://doi.org/10.1111/J.1875-595X.2012.00131.X.

    Article  PubMed  Google Scholar 

  12. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917. https://doi.org/10.1002/IJC.25516.

    Article  CAS  PubMed  Google Scholar 

  13. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/CAAC.21660.

    Article  PubMed  Google Scholar 

  14. Lin L, Yan L, Liu Y, Yuan F, Li H, Ni J. Incidence and death in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the Global Burden of Disease Study. J Hematol Oncol. 2019;12:1–21. https://doi.org/10.1186/S13045-019-0783-9.

    Article  Google Scholar 

  15. Vinoth Kumar NM, Khijmatgar S, Chowdhury C. Interrelations of level of urinary cotinine and score for fagerstrom test for nicotine dependence among beedi smokers, and smokeless tobacco users in India. Indian J Psychol Med. 2017;39:392–8. https://doi.org/10.4103/0253-7176.211758.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mumbai TI of SS (TISS). Global Adult Tobacco Survey GATS 2 India 2016–17 n.d.

  17. Yang EC, Tan MT, Schwarz RA, Richards-Kortum RR, Gillenwater AM, Vigneswaran N. Noninvasive diagnostic adjuncts for the evaluation of potentially premalignant oral epithelial lesions: current limitations and future directions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125:670. https://doi.org/10.1016/J.OOOO.2018.02.020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Singh R, Das S, Datta S, Mazumdar A, Biswas NK, Maitra A, et al. Study of caspase 8 mutation in oral cancer and adjacent precancer tissues and implication in progression. PLoS One. 2020. https://doi.org/10.1371/JOURNAL.PONE.0233058.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rajagopalan P, Patel K, Jain AP, Nanjappa V, Datta KK, Subbannayya T, et al. Molecular alterations associated with chronic exposure to cigarette smoke and chewing tobacco in normal oral keratinocytes. Cancer Biol Ther. 2018;19:773–85. https://doi.org/10.1080/15384047.2018.1470724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhan N, Karan A, Srivastava S, Selvaraj S, Subramanian SV, Millett C. Have socioeconomic inequalities in tobacco use in India increased over time? Trends from the national sample surveys (2000–2012). Nicot Tob Res. 2016;18:1711. https://doi.org/10.1093/NTR/NTW092.

    Article  Google Scholar 

  21. Orisakwe OE, Igweze ZN, Okolo KO, Udowelle NA. Human health hazards of poly aromatic hydrocarbons in Nigerian smokeless tobacco. Toxicol Rep. 2015;2:1019. https://doi.org/10.1016/J.TOXREP.2015.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffmann D, Djordjevic Mv. Chemical composition and carcinogenicity of smokeless tobacco. Adv Dent Res. 1997;11:322–9. https://doi.org/10.1177/08959374970110030301.

    Article  CAS  PubMed  Google Scholar 

  23. Benowitz NL, Porchet H, Sheiner L, Jacob P. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther. 1988;44:23–8. https://doi.org/10.1038/CLPT.1988.107.

    Article  CAS  PubMed  Google Scholar 

  24. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29. https://doi.org/10.1007/978-3-540-69248-5_2.

    Article  CAS  Google Scholar 

  25. Hawkins SS, Bach N, Baum CF. Impact of tobacco control policies on adolescent smokeless tobacco and cigar use: a difference-in-differences approach. BMC Public Health. 2018. https://doi.org/10.1186/S12889-018-5063-Z.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hwa Yun B, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom Rev. 2020;39:55–82. https://doi.org/10.1002/mas.21570.

    Article  CAS  PubMed  Google Scholar 

  27. Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, et al. Identification of more than 100 structurally unique DNA-phosphate adducts formed during rat lung carcinogenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis. 2018;39:232–41. https://doi.org/10.1093/carcin/bgx135.

    Article  CAS  PubMed  Google Scholar 

  28. Ma B, Stepanov I, Hecht SS. Recent studies on DNA adducts resulting from human exposure to tobacco smoke. Toxics. 2019;7:16. https://doi.org/10.3390/toxics7010016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peterson LA. Context matters: contribution of specific DNA adducts to the genotoxic properties of the tobacco-specific nitrosamine NNK. Chem Res Toxicol. 2017;30:420–33. https://doi.org/10.1021/ACS.CHEMRESTOX.6B00386/ASSET/IMAGES/MEDIUM/TX-2016-003862_0007.GIF.

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, Turesky RJ. Human biomonitoring of DNA adducts by ion trap multistage mass spectrometry. Curr Protoc Nucleic Acid Chem. 2016. https://doi.org/10.1002/cpnc.12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Narayanapillai S, Hu Q, Fujioka N, Xing C. Contribution of tobacco use and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone to three methyl DNA adducts in urine. Chem Res Toxicol. 2018;31:836–8. https://doi.org/10.1021/acs.chemrestox.8b00155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev. 2015;44:7829–54. https://doi.org/10.1039/c5cs00316d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lahoti S, Dixit P. Declining trend of smoking and smokeless tobacco in India: a decomposition analysis. PLoS One. 2021. https://doi.org/10.1371/JOURNAL.PONE.0247226.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bezerra NVF, Leite KF, de Medeiros MMD, Martins ML, Cardoso AMR, Alves PM, et al. Impact of the anatomical location, alcoholism and smoking on the prevalence of advanced oral cancer in Brazil. Med Oral Patol Oral Cir Bucal. 2018;23:e295. https://doi.org/10.4317/MEDORAL.22318.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mishra MK, Gupta S, Shivangi SS. Assessing long non-coding RNAs in tobacco-associated oral cancer. Curr Cancer Drug Targets. 2022. https://doi.org/10.2174/1568009622666220623115234.

    Article  PubMed  Google Scholar 

  36. Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, et al. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling. Int J Mol Sci. 2022. https://doi.org/10.3390/IJMS23179779/S1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bolesina N, Gatti G, López de Blanc S, Dhooge S, Rocha D, Fernandez E, et al. Oral squamous cell carcinoma (OSCC) tumors from heavy alcohol consumers are associated with higher levels of TLR9 and a particular immunophenotype: Impact on patient survival. Front Immunol. 2022. https://doi.org/10.3389/FIMMU.2022.941667.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sultan AS, Theofilou VI, Alfaifi A, Montelongo-Jauregui D, Jabra-Rizk MA. Is Candida albicans an opportunistic oncogenic pathogen? PLoS Pathog. 2022. https://doi.org/10.1371/JOURNAL.PPAT.1010413.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: a disease of opportunity. J Fungi. 2020. https://doi.org/10.3390/JOF6010015.

    Article  Google Scholar 

  40. Vadovics M, Ho J, Igaz N, Alföldi R, Rakk D, Veres E, et al. Candida albicans enhances the progression of oral squamous cell carcinoma in vitro and in vivo. MBio. 2022. https://doi.org/10.1128/MBIO.03144-21.

    Article  PubMed Central  Google Scholar 

  41. Saxena A, Nagi R, Sandeep T, Patil DJ, Choudhary R, Kaur A. Identification of candida albicans and nonalbicans candida resistant species in tobacco users and oral squamous cell carcinoma patients: Comparison of HiCrome agar and automated VITEK 2 system. J Oral Maxillofac Pathol. 2021;25:551. https://doi.org/10.4103/JOMFP.JOMFP_411_20.

    Article  PubMed  Google Scholar 

  42. Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol. 2022. https://doi.org/10.3389/FMICB.2022.988734.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krüger M, Pabst AM, Walter C, Sagheb K, Günther C, Blatt S, et al. The prevalence of human papilloma virus (HPV) infections in oral squamous cell carcinomas: a retrospective analysis of 88 patients and literature overview. J Craniomaxillofac Surg. 2014;42:1506–14. https://doi.org/10.1016/J.JCMS.2014.04.022.

    Article  PubMed  Google Scholar 

  44. Heawchaiyaphum C, Iizasa H, Ekalaksananan T, Burassakarn A, Kiyono T, Kanehiro Y, et al. Epstein-Barr virus infection of oral squamous cells. Microorganisms. 2020. https://doi.org/10.3390/MICROORGANISMS8030419.

    Article  PubMed  PubMed Central  Google Scholar 

  45. She Y, Nong X, Zhang M, Wang M. Epstein-Barr virus infection and oral squamous cell carcinoma risk: a meta-analysis. PLoS One. 2017. https://doi.org/10.1371/JOURNAL.PONE.0186860.

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Lima MAP, Teodoro IPP, de Galiza LE, Filho PHBM, de Marques MF, Junior RFFP, et al. Association between Epstein-Barr virus and oral carcinoma: a systematic review with meta-analysis. Crit Rev Oncog. 2019;24:349–68. https://doi.org/10.1615/CRITREVONCOG.2019031897.

    Article  PubMed  Google Scholar 

  47. Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol. 2021;19:315. https://doi.org/10.1186/s12957-021-02423-y.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pérot P, Falguieres M, Arowas L, Laude H, Foy J-P, Goudot P, et al. Investigation of viral etiology in potentially malignant disorders and oral squamous cell carcinomas in non-smoking, non-drinking patients. PLoS One. 2020;15:e0232138–e0232138. https://doi.org/10.1371/journal.pone.0232138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rettig E, Kiess AP, Fakhry C. The role of sexual behavior in head and neck cancer: implications for prevention and therapy. Expert Rev Anticancer Ther. 2015;15:35–49. https://doi.org/10.1586/14737140.2015.957189.

    Article  CAS  PubMed  Google Scholar 

  50. Katerji M, Duerksen-Hughes PJ. DNA damage in cancer development: special implications in viral oncogenesis. Am J Cancer Res. 2021;11:3956–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miranda-Galvis M, Loveless R, Kowalski LP, Teng Y. Impacts of environmental factors on head and neck cancer pathogenesis and progression. Cells. 2021;10:389. https://doi.org/10.3390/cells10020389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Economopoulou P, Kotsantis I, Psyrri A. Special issue about head and neck cancers: HPV positive cancers. Int J Mol Sci. 2020;21:3388. https://doi.org/10.3390/ijms21093388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li C, Zhao L, Wang Q, Ma S, Sun J, Ma C, et al. Neutrophils infiltration and its correlation with human papillomavirus status in the oral squamous cell carcinoma. Cancer Manag Res. 2019;11:5171–85. https://doi.org/10.2147/CMAR.S202465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee SH, Lee C-R, Rigas NK, Kim RH, Kang MK, Park N-H, et al. Human papillomavirus 16 (HPV16) enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation. Papillomavirus Res. 2015;1:116–25. https://doi.org/10.1016/j.pvr.2015.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wittekindt C, Wagner S, Sharma SJ, Würdemann N, Knuth J, Reder H, et al. HPV—a different view on head and neck cancer TT-HPV–Das andere Kopf-Hals-Karzinom. Laryngorhinootologie. 2018;97:S48-113. https://doi.org/10.1055/s-0043-121596.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kerishnan JP, Gopinath SCB, Kai SB, Tang T-H, Ng HL-C, Rahman ZAA, et al. Detection of human papillomavirus 16-specific IgG and IgM antibodies in patient sera: a potential indicator of oral squamous cell carcinoma risk factor. Int J Med Sci. 2016;13:424–31. https://doi.org/10.7150/ijms.14475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. She Y, Nong X, Zhang M, Wang M. Epstein-Barr virus infection and oral squamous cell carcinoma risk: a meta-analysis. PLoS One. 2017;12:e0186860–e0186860. https://doi.org/10.1371/journal.pone.0186860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guidry JT, Birdwell CE, Scott RS. Epstein-Barr virus in the pathogenesis of oral cancers. Oral Dis. 2018;24:497–508. https://doi.org/10.1111/odi.12656.

    Article  CAS  PubMed  Google Scholar 

  59. Rahman R, Poomsawat S, Juengsomjit R, Buajeeb W. Overexpression of epstein-barr virus-encoded latent membrane protein-1 (LMP-1) in oral squamous cell carcinoma. BMC Oral Health. 2019;19:142. https://doi.org/10.1186/s12903-019-0832-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Budhy TI. Molecular grading of oral squamous cell carcinomas infected with EBV. Asian Pac J Cancer Prev. 2018;19:1793–6. https://doi.org/10.22034/APJCP.2018.19.7.1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strycharz-Dudziak M, Kiełczykowska M, Drop B, Świątek Ł, Kliszczewska E, Musik I, et al. Total antioxidant status (TAS), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in oropharyngeal cancer associated with EBV infection. Oxid Med Cell Longev. 2019;2019:5832410. https://doi.org/10.1155/2019/5832410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-risk human papillomavirus and epstein-barr virus coinfection: a potential role in head and neck carcinogenesis. Biology (Basel). 2021;10:1232. https://doi.org/10.3390/biology10121232.

    Article  CAS  PubMed  Google Scholar 

  63. TCGA. No Title n.d. https://www.cancer.gov/tcga. Accessed 7 April 2022

  64. Ragos V, Mastronikolis NS, Tsiambas E, Baliou E, Mastronikolis SN, Tsoukalas N, et al. P53 mutations in oral cavity carcinoma. J BUON. 2018;23:1569–72.

    PubMed  Google Scholar 

  65. Grzes M, Oron M, Staszczak Z, Jaiswar A, Nowak-Niezgoda M, Walerych D. A driver never works alone-interplay networks of mutant p53, MYC, RAS, and other universal oncogenic drivers in human cancer. Cancers (Basel). 2020;12:1532. https://doi.org/10.3390/cancers12061532.

    Article  CAS  PubMed  Google Scholar 

  66. Heah KG, Hassan MIA, Huat SC. p53 Expression as a marker of microinvasion in oral squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12:1017–22.

    PubMed  Google Scholar 

  67. Wen G, Wang H, Zhong Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: a PRISMA-compliant meta-analysis. Medicine. 2018;97:e9971–e9971. https://doi.org/10.1097/MD.0000000000009971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindemann A, Takahashi H, Patel AA, Osman AA, Myers JN. Targeting the DNA damage response in OSCC with TP53 mutations. J Dent Res. 2018;97:635. https://doi.org/10.1177/0022034518759068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids. 2010;2010:284935. https://doi.org/10.4061/2010/284935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shi C, Liu S, Tian X, Wang X, Gao P. A TP53 mutation model for the prediction of prognosis and therapeutic responses in head and neck squamous cell carcinoma. BMC Cancer. 2021. https://doi.org/10.1186/S12885-021-08765-W.

    Article  PubMed  PubMed Central  Google Scholar 

  71. de Bakker T, Journe F, Descamps G, Saussez S, Dragan T, Ghanem G, et al. Restoring p53 function in head and neck squamous cell carcinoma to improve treatments. Front Oncol. 2021. https://doi.org/10.3389/FONC.2021.799993.

    Article  PubMed  Google Scholar 

  72. Chang KW, Lin CE, Tu HF, Chung HY, Chen YF, Lin SC. Establishment of a p53 null murine oral carcinoma cell line and the identification of genetic alterations associated with this carcinoma. Int J Mol Sci. 2020;21:1–12. https://doi.org/10.3390/IJMS21249354.

    Article  Google Scholar 

  73. Helgadottir H, Höiom V, Jönsson G, Tuominen R, Ingvar C, Borg Å, et al. Original article: high risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J Med Genet. 2014;51:545. https://doi.org/10.1136/JMEDGENET-2014-102320.

    Article  CAS  PubMed  Google Scholar 

  74. Gilardi M, Wang Z, Proietto M, Chilla A, Calleja-Valera JL, Goto Y, et al. Tipifarnib as a precision therapy for HRAS-mutant head and neck squamous cell carcinomas. Mol Cancer Ther. 2020;19:1784. https://doi.org/10.1158/1535-7163.MCT-19-0958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lyu H, Li M, Jiang Z, Liu Z, Wang X. Correlate the TP53 Mutation and the HRAS mutation with immune signatures in head and neck squamous cell cancer. Comput Struct Biotechnol J. 2019;17:1020. https://doi.org/10.1016/J.CSBJ.2019.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wahyuningsih L, Dwianingsih EK, Risanti ED, Tirtoprodjo P, Rinonce HT, Hakim FA, et al. Tissue P16 is associated with smoking status among indonesian nasopharyngeal carcinoma subjects. Asian Pac J Cancer Prev. 2019;20:2125. https://doi.org/10.31557/APJCP.2019.20.7.2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hayes TF, Benaich N, Goldie SJ, Sipilä K, Ames-Draycott A, Cai W, et al. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Lett. 2016;383:106. https://doi.org/10.1016/J.CANLET.2016.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ding X, Zheng Y, Wang Z, Zhang W, Dong Y, Chen W, et al. Expression and oncogenic properties of membranous Notch1 in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep. 2018;39:2584. https://doi.org/10.3892/OR.2018.6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gillison ML, Akagi K, Xiao W, Jiang B, Pickard RKL, Li J, et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019;29:1–17. https://doi.org/10.1101/gr.241141.118.

    Article  CAS  PubMed Central  Google Scholar 

  80. Lin-Shiao E, Lan Y, Coradin M, Anderson A, Donahue G, Simpson CL, et al. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev. 2018;32:181–93. https://doi.org/10.1101/gad.306241.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X, Li R, Wu L, Chen Y, Liu S, Zhao H, et al. Histone methyltransferase KMT2D cooperates with MEF2A to promote the stem-like properties of oral squamous cell carcinoma. Cell Biosci. 2022;12:49. https://doi.org/10.1186/s13578-022-00785-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev. 2018;32:868–902. https://doi.org/10.1101/gad.314849.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chakraborty S, Mohiyuddin SMA, Gopinath KS, Kumar A. Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma. BMC Cancer. 2008;8:163. https://doi.org/10.1186/1471-2407-8-163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Irimie AI, Ciocan C, Gulei D, Mehterov N, Atanasov AG, Dudea D, et al. Current insights into oral cancer epigenetics. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19030670.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Arif KMT, Elliott EK, Haupt LM, Griffiths LR. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers. 2020. https://doi.org/10.3390/cancers12102922.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aghiorghiesei O, Zanoaga O, Nutu A, Braicu C, Campian RS, Lucaciu O, et al. The world of oral cancer and its risk factors viewed from the aspect of microRNA expression patterns. Genes (Basel). 2022;13:594. https://doi.org/10.3390/genes13040594.

    Article  CAS  PubMed  Google Scholar 

  87. Horii T, Hatada I. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells. J Reprod Dev. 2016;62:331–5. https://doi.org/10.1262/jrd.2016-046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang T-H, Hsia S-M, Shih Y-H, Shieh T-M. Association of smoking, alcohol use, and betel quid chewing with epigenetic aberrations in cancers. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18061210.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chang C-P, Siwakoti B, Sapkota A, Gautam DK, Lee Y-CA, Monroe M, et al. Tobacco smoking, chewing habits, alcohol drinking and the risk of head and neck cancer in Nepal. Int J Cancer. 2020;147:866–75. https://doi.org/10.1002/ijc.32823.

    Article  CAS  PubMed  Google Scholar 

  90. Yu V, Singh P, Rahimy E, Zheng H, Kuo ZS, Kim E, et al. RNA-seq analysis identifies key long non-coding RNAs connected to the pathogenesis of alcohol-associated head and neck squamous cell carcinoma. Oncol Lett. 2016;12:2846–53. https://doi.org/10.3892/ol.2016.4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Saad MA, Kuo SZ, Rahimy E, Zou AE, Korrapati A, Rahimy M, et al. Alcohol-dysregulated miR-30a and miR-934 in head and neck squamous cell carcinoma. Mol Cancer. 2015;14:181. https://doi.org/10.1186/s12943-015-0452-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ushio R, Hiroi M, Matsumoto A, Mori K, Yamamoto N, Ohmori Y. Enhanced cytotoxic effects in human oral squamous cell carcinoma cells treated with combined methyltransferase inhibitors and histone deacetylase inhibitors. Biomedicines. 2022;10:763. https://doi.org/10.3390/biomedicines10040763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Q, Hu Y, Zhou X, Liu S, Han Q, Cheng L. Role of oral bacteria in the development of oral squamous cell carcinoma. Cancers (Basel). 2020;12:1–18. https://doi.org/10.3390/CANCERS12102797.

    Article  Google Scholar 

  94. Shabbir A, Waheed H, Ahmed S, Shaikh SS, Farooqui WA. Association of salivary cathepsin B in different histological grades among patients presenting with oral squamous cell carcinoma. BMC Oral Health. 2022;22:63. https://doi.org/10.1186/S12903-022-02052-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Csősz É, Márkus B, Darula Z, Medzihradszky KF, Nemes J, Szabó E, et al. Salivary proteome profiling of oral squamous cell carcinoma in a Hungarian population. FEBS Open Bio. 2018;8:556. https://doi.org/10.1002/2211-5463.12391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nandakumar A, Nataraj P, James A, Krishnan R, Mahesh KM. Estimation of salivary 8-hydroxydeoxyguanosine (8-OHdG) as a potential biomarker in assessing progression towards malignancy: a case-control study. Asian Pac J Cancer Prev. 2020;21:2325. https://doi.org/10.31557/APJCP.2020.21.8.2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Basu B, Chakraborty J, Chandra A, Katarkar A, Baldevbhai JRK, Dhar Chowdhury D, et al. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India. Clin Epigenetics. 2017. https://doi.org/10.1186/S13148-017-0314-X.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Duffy MJ, Napieralski R, Martens JWM, Span PN, Spyratos F, Sweep FCGJ, et al. Methylated genes as new cancer biomarkers. Eur J Cancer. 2009;45:335–46. https://doi.org/10.1016/j.ejca.2008.12.008.

    Article  CAS  PubMed  Google Scholar 

  99. Kuo I-Y, Chang J-M, Jiang S-S, Chen C-H, Chang I-S, Sheu B-S, et al. Prognostic CpG methylation biomarkers identified by methylation array in esophageal squamous cell carcinoma patients. Int J Med Sci. 2014;11:779–87. https://doi.org/10.7150/ijms.7405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Foy JP, Pickering CR, Papadimitrakopoulou VA, Jelinek J, Lin SH, William WN, et al. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. Cancer Prev Res. 2015;8:1027–35. https://doi.org/10.1158/1940-6207.CAPR-14-0179/36367/AM/NEW-DNA-METHYLATION-MARKERS-AND-GLOBAL-DNA.

    Article  CAS  Google Scholar 

  101. Taioli E, Ragin C, Wang X-H, Chen J, Langevin SM, Brown AR, et al. Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation. BMC Cancer. 2009;9:354. https://doi.org/10.1186/1471-2407-9-354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, le Calvez-Kelm F, Kaaks R, et al. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics. 2016;8:599–618. https://doi.org/10.2217/EPI-2016-0001.

    Article  CAS  PubMed  Google Scholar 

  103. Su C-W, Chang Y-C, Chien M-H, Hsieh Y-H, Chen M-K, Lin C-W, et al. Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis. 2019;10:793. https://doi.org/10.1038/s41419-019-2016-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guida F, Sandanger TM, Castagné R, Campanella G, Polidoro S, Palli D, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet. 2015;24:2349–59. https://doi.org/10.1093/HMG/DDU751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shojaeian S, Moazeni-Roodi A, Allameh A, Garajei A, Kazemnejad A, Kabir K, et al. Methylation of TGM-3 promoter and its association with oral squamous cell carcinoma (OSCC). Avicenna J Med Biotechnol. 2021;13:65–73. https://doi.org/10.18502/ajmb.v13i2.5523.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hill SY, Rompala G, Homanics GE, Zezza N. Cross-generational effects of alcohol dependence in humans on HRAS and TP53 methylation in offspring. Epigenomics. 2017;9:1189–203. https://doi.org/10.2217/epi-2017-0052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Von Meyenn F, Iurlaro M, Habibi E, Liu NQ, Salehzadeh-Yazdi A, Santos F, et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol Cell. 2016;62:848–61. https://doi.org/10.1016/j.molcel.2016.04.025.

    Article  CAS  Google Scholar 

  108. Zhao C, Zou H, Zhang J, Wang J, Liu H. An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncol Rep. 2018;40:2637–47. https://doi.org/10.3892/or.2018.6702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rapado-González Ó, Martínez-Reglero C, Salgado-Barreira Á, Santos MA, López-López R, Díaz-Lagares Á, et al. Salivary DNA methylation as an epigenetic biomarker for head and neck cancer. Part II: a cancer risk meta-analysis. J Pers Med. 2021;11:606. https://doi.org/10.3390/jpm11070606.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly Sehgal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This review did not require any ethical approval.

Informed consent

This study did not involve any human subjects. Therefore, no prior informed consent was obtained for the same.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M.K., Gupta, S., Shivangi et al. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer. Clin Transl Oncol 25, 3332–3344 (2023). https://doi.org/10.1007/s12094-023-03192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03192-8

Keywords

Navigation