Skip to main content

Advertisement

Log in

The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target?

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through “microRNA sponges”. The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

RB:

Retinoblastoma

miRNA:

MicroRNA

circRNA:

Circular RNA

pRB:

Retinoblastoma protein

CDKs:

Cyclin-dependent kinases

EZH2:

Zeste 2 polycomb repressive complex 2 subunit

lncRNAs:

Long non-coding RNAs

EcRNAs:

Exonic circRNAs

EIciRNAs:

Exonic-intronic circRNAs

ciRNAs:

Circular intronic RNAs

tricRNAs:

Pre-tRNA derived circRNAs

MBL:

Muscleblind

RBPs:

RNA-binding proteins

ADAR1:

Adenosine deaminase acting on RNA 1

DHX9:

DExH-box helicase 9

TSEN:

TRNA splicing endonuclease

BHB:

Bulge-helix-bulge

AGO:

Argonaute

CRC:

Colorectal cancer

ORF:

Open reading frame

EMT:

Epithelial to mesenchymal transition

DHDDS:

Dehydrodolichol diphosphate synthase

STX17:

Syntaxin 17

SNAP29:

Synaptosome-associated protein 29

VAMP8:

Vesicle-associated membrane protein 8

ADAM19:

A disintegrin and metalloproteinase 19

EMC9:

ER membrane protein complex subunit 9

LRP6:

Low-density lipoprotein receptor-related protein 6

SLC7A5:

Solute carrier family 7 member 5

hTERT:

Human telomerase reverse transcriptase

RHBDD1:

Rhomboid domain-containing protein 1

PDK1:

Pyruvate dehydrogenase kinase 1

HDAC9:

Histone deacetylase 9

SMAD2:

SMAD family member 2

TET1:

Ten–eleven translocation 1

PDCD4:

Programmed cell death 4

SOCS2:

Suppressor of cytokine signaling 2

GJB4:

Gap junction beta-4

ROCK1:

Coiled‑coil containing protein kinase 1

PEG10:

Paternally expressed 10

NSCLC:

Non-small cell lung cancer

LASP1:

LIM and SH3 protein 1

SHPRH:

Snf2 histone linker PHD RING helicase

MMPs:

Matrix metalloproteinases

ODC1:

Ornithine decarboxylase

SKP2:

S‐phase kinase‐associated protein 2

TRHDE:

Thyrotropin-releasing hormone-degrading enzyme

shRNA:

Short hairpin RNA

CUL2:

Cullin 2

DDX42:

DEAD-box helicase 42

ABCB1:

ATP-binding cassette subfamily B member 1

XIAP:

X-linked inhibitor of apoptosis

OSCC:

Oral squamous cell carcinoma

References

  1. Kaewkhaw R, Rojanaporn D. Retinoblastoma: etiology, modeling, and treatment. Cancers. 2020;12(8):2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, et al. Retinoblastoma. Nat Rev Dis Primers. 2015;1(1):15021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lohmann DR. RB1 gene mutations in retinoblastoma. Hum Mutat. 1999;14(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  4. Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013;14(5):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  6. Dimaras H, Khetan V, Halliday W, Orlic M, Prigoda NL, Piovesan B, et al. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum Mol Genet. 2008;17(10):1363–72.

    Article  CAS  PubMed  Google Scholar 

  7. Dimaras H, Kimani K, Dimba EAO, Gronsdahl P, White A, Chan HSL, et al. Retinoblastoma. Lancet. 2012;379(9824):1436–46.

    Article  PubMed  Google Scholar 

  8. Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol. 2014;42(1):33–52.

    Article  PubMed  Google Scholar 

  9. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan M, Walters LL, Li Q, Thomas DG, Miller JML, Zhang Q, et al. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma. Lab Invest. 2015;95(11):1278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golabchi K, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, et al. MicroRNAs in retinoblastoma: potential diagnostic and therapeutic biomarkers. J Cell Physiol. 2018;233(4):3016–23.

    Article  CAS  PubMed  Google Scholar 

  12. Yang M, Wei W. Long non-coding RNAs in retinoblastoma. Pathol Res Pract. 2019;215(8): 152435.

    Article  CAS  PubMed  Google Scholar 

  13. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176(4):869-881.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bach D-H, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends in Cancer. 2020;6(4):319–36.

    Article  CAS  PubMed  Google Scholar 

  16. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.

    Article  CAS  PubMed  Google Scholar 

  17. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  18. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  20. Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. elife. 2015;4:e07540.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmidt CA, Giusto JD, Bao A, Hopper AK, Matera AG. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 2019;47(12):6452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.

    Article  PubMed  Google Scholar 

  23. Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen L-L, et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940-954.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W, et al. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer. 2019;18(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14(3):361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37(13):1805–14.

    Article  CAS  PubMed  Google Scholar 

  27. Harper KL, McDonnell E, Whitehouse A. CircRNAs: from anonymity to novel regulators of gene expression in cancer (Review). Int J Oncol. 2019;55(6):1183–93.

    CAS  PubMed  Google Scholar 

  28. Zhu L-P, He Y-J, Hou J-C, Chen X, Zhou S-Y, Yang S-J, et al. The role of circRNAs in cancers. Biosci Rep. 2017;37(5):1–11.

    Article  Google Scholar 

  29. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Q, Ju L-L, Ji X, Cao Y-L, Shao J-G, Chen L. Plasma circRNAs as biomarkers in cancer. Cancer Manag Res. 2021;13:7325–37.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun Z, Zhang A, Hou M, Jiang T. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p. Bioengineered. 2020;11(1):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu H, Yuan H, Xu D, Chen K, Tan N, Zheng Q. Circular RNA circ_0000034 upregulates STX17 level to promote human retinoblastoma development via inhibiting miR-361-3p. Eur Rev Med Pharmacol Sci. 2020;24(23):12080–92.

    CAS  PubMed  Google Scholar 

  33. Wang H, Li M, Cui H, Song X, Sha Q. CircDHDDS/miR-361-3p/WNT3A axis promotes the development of retinoblastoma by regulating proliferation, cell cycle, migration, and invasion of retinoblastoma cells. Neurochem Res. 2020;45(11):2691–702.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang Y, Xiao F, Wang L, Wang T, Chen L. Circular RNA has_circ_0000034 accelerates retinoblastoma advancement through the miR-361-3p/ADAM19 axis. Mol Cell Biochem. 2021;476(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  35. Fu C, Wang S, Jin L, Zhang M, Li M. CircTET1 inhibits retinoblastoma progression via targeting miR-492 and miR-494-3p through Wnt/β-catenin signaling pathway. Curr Eye Res. 2021;46(7):978–87.

    Article  CAS  PubMed  Google Scholar 

  36. Lyu J, Wang Y, Zheng Q, Hua P, Zhu X, Li J, et al. Reduction of circular RNA expression associated with human retinoblastoma. Exp Eye Res. 2019;184:278–85.

    Article  PubMed  Google Scholar 

  37. Chen N-N, Chao D-L, Li X-G. Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis. Cell Biochem Funct. 2020;38(8):1036–46.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Wu J, Li Y, Jiang Y, Wang L, Chen Y, et al. Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis. Cancer Cell Int. 2020;20(1):1–12.

    Article  Google Scholar 

  39. Yu B, Zhao J, Dong Y. Circ_0000527 promotes retinoblastoma progression through modulating miR-98-5p/XIAP pathway. Curr Eye Res. 2021;46(9):1414–23.

    Article  CAS  PubMed  Google Scholar 

  40. Zuo X, Fu C, Xie J, Wang X, Yan Z. Hsa_circ_0000527 downregulation suppresses the development of retinoblastoma by modulating the miR-27a-3p/HDAC9 pathway. Curr Eye Res. 2022;47(1):115–26.

    Article  CAS  PubMed  Google Scholar 

  41. Liang T, Fan M, Meng Z, Sun B, Mi S, Gao X. Circ_0000527 drives retinoblastoma progression by regulating miR-1236-3p/SMAD2 pathway. Curr Eye Res. 2021. https://doi.org/10.1080/02713683.2021.2007535.

    Article  PubMed  Google Scholar 

  42. Zheng T, Chen W, Wang X, Cai W, Wu F, Lin C. Circular RNA circ-FAM158A promotes retinoblastoma progression by regulating miR-138–5p/SLC7A5 axis. Exp Eye Res. 2021;211: 108650.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, Xue B, Pan J, Shen N. Circ-E2F3 acts as a ceRNA for miR-204-5p to promote proliferation, metastasis and apoptosis inhibition in retinoblastoma by regulating ROCK1 expression. Exp Mol Pathol. 2021;120: 104637.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao W, Wang S, Qin T, Wang W. Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3. J Cell Biochem. 2020;121(7):3516–25.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Dou X, Kong Q, Li Y, Zhou X. Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol. 2022;42(2):509–23.

    Article  PubMed  Google Scholar 

  46. Han Q, Ma L, Shao L, Wang H, Feng M. Circ_0075804 regulates the expression of LASP1 by Targeting miR-1287–5p and thus affects the biological process of retinoblastoma. Curr Eye Res. 2022. https://doi.org/10.1080/02713683.2022.2053164.

    Article  PubMed  Google Scholar 

  47. Xing L, Zhang L, Feng Y, Cui Z, Ding L. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway. Biomed Pharmacother. 2018;105:326–33.

    Article  CAS  PubMed  Google Scholar 

  48. Du S, Wang S, Zhang F, Lv Y. SKP2, positively regulated by circ_ODC1/miR-422a axis, promotes the proliferation of retinoblastoma. J Cell Biochem. 2020;121(1):322–31.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang Y, Xiao F, Wang L, Wang T, Chen L. Hsa_circ_0099198 facilitates the progression of retinoblastoma by regulating miR-1287/LRP6 axis. Exp Eye Res. 2021;206: 108529.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang H, Qiu X, Song Z, Lan L, Ren X, Ye B. CircCUL2 suppresses retinoblastoma cells by regulating miR-214-5p/E2F2 Axis. Anticancer Drugs. 2022;33(1):e218–27.

    Article  CAS  PubMed  Google Scholar 

  51. Lv X, Yang H, Zhong H, He L, Wang L. Osthole exhibits an antitumor effect in retinoblastoma through inhibiting the PI3K/AKT/mTOR pathway via regulating the hsa_circ_0007534/miR-214-3p axis. Pharm Biol. 2022;60(1):417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Plousiou M, Vannini I. Non-coding RNAs in retinoblastoma. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.01155.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ji W, Qiu C, Wang M, Mao N, Wu S, Dai Y. Hsa_circ_0001649: a circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 2018;497(1):122–6.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Qiu S, Luo P, Zhou H, Jing W, Liang C, et al. Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis. Cancer Biomark. 2018;22:135–42.

    Article  CAS  PubMed  Google Scholar 

  55. Xu Y, Yao Y, Zhong X, Leng K, Qin W, Qu L, et al. Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem Biophys Res Commun. 2018;496(2):455–61.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao D, Cui Z. MicroRNA-361-3p regulates retinoblastoma cell proliferation and stemness by targeting hedgehog signaling. Exp Ther Med. 2019;17(2):1154–62.

    CAS  PubMed  Google Scholar 

  57. Yao H, Chen R, Yang Y, Jiang J. LncRNA BBOX1-AS1 aggravates the development of ovarian cancer by sequestering miR-361-3p to augment PODXL expression. Reprod Sci. 2021;28(3):736–44.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Mou Z, Xu C, Wu S, Dai X, Chen X, et al. Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/IGF2R regulation. Cell Death Dis. 2021;12(8):778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng Z-H, Zheng L, Yao T, Tao S-Y, Wei X-A, Zheng Z-Y, et al. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 2021;12(11):1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu B, Sun Y, Tang M, Liang C, Huang C-P, Niu Y, et al. The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis. 2020;11(9):807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu S, Song L, Yao H, Zhang L, Xu D, Li Q, et al. Preserved miR-361-3p expression is an independent prognostic indicator of favorable survival in cervical cancer. Dis Markers. 2018;2018:8949606.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xia F, Chen Y, Jiang B, Bai N, Li X. Hsa_circ_0011385 accelerates the progression of thyroid cancer by targeting miR-361-3p. Cancer Cell Int. 2020;20(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, et al. Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Mol Cancer. 2019;18(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151(6):1256–69.

    Article  CAS  PubMed  Google Scholar 

  65. Uematsu M, Nishimura T, Sakamaki Y, Yamamoto H, Mizushima N. Accumulation of undegraded autophagosomes by expression of dominant-negative STX17 (syntaxin 17) mutants. Autophagy. 2017;13(8):1452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang J, Yang Y, Fang F, Liu K. MALAT1 modulates the autophagy of retinoblastoma cell through miR-124-mediated stx17 regulation. J Cell Biochem. 2018;119(5):3853–63.

    Article  CAS  PubMed  Google Scholar 

  67. He S, Lu Y, Liu X, Huang X, Keller ET, Qian C-N, et al. Wnt3a: functions and implications in cancer. Chin J Cancer. 2015;34(3):50.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qi B, Newcomer RG, Sang Q-XA. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des. 2009;15(20):2336–48.

    Article  CAS  PubMed  Google Scholar 

  69. Finnerty JR, Wang W-X, Hébert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol. 2010;402(3):491–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li W, Liu M, Feng Y, Xu YF, Huang YF, Che JP, et al. Downregulated miR-646 in clear cell renal carcinoma correlated with tumour metastasis by targeting the nin one binding protein (NOB1). Br J Cancer. 2014;111(6):1188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang P, Tang WM, Zhang H, Li YQ, Peng Y, Wang J, et al. MiR-646 inhibited cell proliferation and EMT-induced metastasis by targeting FOXK1 in gastric cancer. Br J Cancer. 2017;117(4):525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351(1):41–58.

    Article  CAS  PubMed  Google Scholar 

  73. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–84.

    Article  CAS  PubMed  Google Scholar 

  74. Antonsson B, Martinou J-C. The Bcl-2 protein family. Exp Cell Res. 2000;256(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  75. Wang ZM, Luo JQ, Xu LY, Zhou HH, Zhang W. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. Pharmacogenomics J. 2018;18(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yan G, Li C, Zhao Y, Yue M, Wang L. Downregulation of microRNA-629-5p in colorectal cancer and prevention of the malignant phenotype by direct targeting of low-density lipoprotein receptor-related protein 6. Int J Mol Med. 2019;44(3):1139–50 (Retraction in /10.3892/ijmm.2021.5057).

    CAS  PubMed  Google Scholar 

  77. Kong W, Yang L, Li P, Kong Q, Wang H, Han G, et al. MiR-381-3p inhibits proliferation, migration and invasion by targeting LRP6 in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2018;22(12):3804–11.

    CAS  PubMed  Google Scholar 

  78. Wang J, Wang X, Li Z, Liu H, Teng Y. Retracted: MicroRNA-183 suppresses retinoblastoma cell growth, invasion and migration by targeting LRP6. FEBS J. 2014;281(5):1355–65.

    Article  CAS  PubMed  Google Scholar 

  79. Miko E, Margitai Z, Czimmerer Z, Várkonyi I, Dezső B, Lányi Á, et al. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett. 2011;585(8):1191–6.

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Fei X, Wu W, Chen X, Su L, Zhu Z, et al. SLC7A5 functions as a downstream target modulated by CRKL in metastasis process of gastric cancer SGC-7901 cells. PLoS ONE. 2016;11(11): e0166147.

    Article  PubMed  PubMed Central  Google Scholar 

  81. He T-G, Xiao Z-Y, Xing Y-Q, Yang H-J, Qiu H, Chen J-B. Tumor suppressor miR-184 enhances chemosensitivity by directly inhibiting SLC7A5 in retinoblastoma. Front Oncol. 2019;9:1163.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Z, Yao Y, Zheng F, Guan Z, Zhang L, Dong N, et al. Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma. Eur Rev Med Pharmacol Sci. 2017;21(24):5624–9.

    CAS  PubMed  Google Scholar 

  84. Wang X, Zhao Y, Cao W, Wang C, Sun B, Chen J, et al. miR-138-5p acts as a tumor suppressor by targeting hTERT in human colorectal cancer. Int J Clin Exp Pathol. 2017;10(12):11516–25.

    PubMed  PubMed Central  Google Scholar 

  85. Zhao C, Ling X, Li X, Hou X, Zhao D. MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1. Breast Cancer. 2019;26(6):817–25.

    Article  PubMed  Google Scholar 

  86. Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006;13(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  87. Lapierre M, Linares A, Dalvai M, Duraffourd C, Bonnet S, Boulahtouf A, et al. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget. 2016;7(15):19693–708.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ma Z, Liu D, Di S, Zhang Z, Li W, Zhang J, et al. Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment. J Pineal Res. 2019;67(2): e12587.

    Article  PubMed  Google Scholar 

  89. Maliekal TT, Antony M-L, Nair A, Paulmurugan R, Karunagaran D. Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer. Oncogene. 2003;22(31):4889–97.

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Kong J, Chang H, Kim H, Kim A. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget. 2016;7(51):85021–32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang L, Zhu Z, Yan H, Wang W, Wu Z, Zhang F, et al. Creatine promotes cancer metastasis through activation of Smad2/3. Cell Metab. 2021;33(6):1111-1123.e4.

    Article  CAS  PubMed  Google Scholar 

  92. Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H, et al. TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 2017;147(2):408–17.

    Article  CAS  PubMed  Google Scholar 

  93. Fu R, Ding Y, Luo J, Yu L, Li CL, Li DS, et al. TET1 exerts its tumour suppressor function by regulating autophagy in glioma cells. 2017. Biosci Rep. https://doi.org/10.1042/BSR20160523.

  94. Tian Y, Pan F, Sun X, Gan M, Lin A, Zhang D, et al. Association of TET1 expression with colorectal cancer progression. Scand J Gastroenterol. 2017;52(3):312–20.

    Article  CAS  PubMed  Google Scholar 

  95. Shen F, Mo M-H, Chen L, An S, Tan X, Fu Y, et al. MicroRNA-21 down-regulates Rb1 expression by targeting PDCD4 in retinoblastoma. J Cancer. 2014;5(9):804–12.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xu L, Long H, Zhou B, Jiang H, Cai M. CircMKLN1 suppresses the progression of human retinoblastoma by modulation of miR-425-5p/PDCD4 axis. Curr Eye Res. 2021;46(11):1751–61.

    Article  CAS  PubMed  Google Scholar 

  97. Göke R, Barth P, Schmidt A, Samans B, Lankat-Buttgereit B. Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21Waf1/Cip1. Am J Physiol Cell Physiol. 2004;287(6):C1541–6.

    Article  PubMed  Google Scholar 

  98. Zheng S, Zhong Y-F, Tan D-M, Xu Y, Chen H-X, Wang D. miR-183-5p enhances the radioresistance of colorectal cancer by directly targeting ATG5. J Biosci. 2019;44(4):92.

    Article  PubMed  Google Scholar 

  99. Ma Y, Liang AJ, Fan Y-P, Huang Y-R, Zhao X-M, Sun Y, et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget. 2016;7(27):42805–25.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lowery AJ, Miller N, Dwyer RM, Kerin MJ. Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer. 2010;10(1):502.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shen F, Cai W-S, Feng Z, Li J-L, Chen J-W, Cao J, et al. MiR-492 contributes to cell proliferation and cell cycle of human breast cancer cells by suppressing SOX7 expression. Tumor Biology. 2015;36(3):1913–21.

    Article  CAS  PubMed  Google Scholar 

  102. Jiang J, Zhang Y, Yu C, Li Z, Pan Y, Sun C. MicroRNA-492 expression promotes the progression of hepatic cancer by targeting PTEN. Cancer Cell Int. 2014;14(1):95.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shi L, Liang M, Li F, Li T, Lai D, Xie Q, et al. MiR-492 exerts tumor-promoting function in prostate cancer through repressing SOCS2 expression. Eur Rev Med Pharmacol Sci. 2019;23(3):992–1001.

    PubMed  Google Scholar 

  104. Wang K, Lü H, Qu H, Xie Q, Sun T, Gan O, et al. miR-492 promotes cancer progression by targeting GJB4 and is a novel biomarker for bladder cancer. Onco Targets Ther. 2019;12:11453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004;23(24):4709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC, et al. Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast cancer research : BCR. 2007;9(3):R33.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Justenhoven C, Pierl CB, Haas S, Fischer HP, Hamann U, Baisch C, et al. Polymorphic loci of E2F2, CCND1 and CCND3 are associated with HER2 status of breast tumors. Int J Cancer. 2009;124(9):2077–81.

    Article  CAS  PubMed  Google Scholar 

  108. Feo F, De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Frau M, et al. Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochem Biophys Acta. 2006;1765(2):126–47.

    CAS  PubMed  Google Scholar 

  109. Zhang J, Xing L, Xu H, Wang K, She J, Shi F, et al. miR-204-5p suppress lymph node metastasis via regulating CXCL12 and CXCR4 in gastric cancer. J Cancer. 2020;11(11):3199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shen J, Xiong J, Shao X, Cheng H, Fang X, Sun Y, et al. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer. 2020;11(15):4550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yao S, Yin Y, Jin G, Li D, Li M, Hu Y, et al. Exosome-mediated delivery of miR-204-5p inhibits tumor growth and chemoresistance. Cancer Med. 2020;9(16):5989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang Y, Wang N, Zeng X, Sun J, Wang G, Xu H, et al. MicroRNA-335 and its target Rock1 synergistically influence tumor progression and prognosis in osteosarcoma. Oncol Lett. 2017;13(5):3057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, et al. ROCK1 promotes migration and invasion of non-small-cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol. 2019;55(4):833–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang D, Liu X, Zhang Q, Chen X. miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1. Cancer Cell Int. 2020;20(1):297.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, et al. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol. 2016;48(5):1933–42.

    Article  CAS  PubMed  Google Scholar 

  116. Ding F, Jiang K, Sheng Y, Li C, Zhu H. LncRNA MIR7-3HG executes a positive role in retinoblastoma progression via modulating miR-27a-3p/PEG10 axis. Exp Eye Res. 2020;193: 107960.

    Article  CAS  PubMed  Google Scholar 

  117. Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 2015;12(6):922–36.

    Article  CAS  PubMed  Google Scholar 

  118. Lu J, Tang L, Xu Y, Ge K, Huang J, Gu M, et al. Mir-1287 suppresses the proliferation, invasion, and migration in hepatocellular carcinoma by targeting PIK3R3. J Cell Biochem. 2018;119(11):9229–38.

    Article  CAS  PubMed  Google Scholar 

  119. Schwarzenbacher D, Klec C, Pasculli B, Cerk S, Rinner B, Karbiener M, et al. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 2019;21(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X, et al. Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochem Biophys Res Commun. 2018;503(3):2089–94.

    Article  CAS  PubMed  Google Scholar 

  121. Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X, et al. Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids. 2020;19:413–20.

    Article  CAS  PubMed  Google Scholar 

  122. Wang H, Shi J, Luo Y, Liao Q, Niu Y, Zhang F, et al. LIM and SH3 Protein 1 induces TGFβ-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin Cancer Res. 2014;20(22):5835–47.

    Article  CAS  PubMed  Google Scholar 

  123. Wang B, Feng P, Xiao Z, Ren E-C. LIM and SH3 protein 1 (Lasp1) is a novel p53 transcriptional target involved in hepatocellular carcinoma. J Hepatol. 2009;50(3):528–37.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang J, Fan J. Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med. 2020;20(2):1145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 2016;16:161–9.

    Article  CAS  PubMed  Google Scholar 

  126. Kim HI, Schultz CR, Buras AL, Friedman E, Fedorko A, Seamon L, et al. Ornithine decarboxylase as a therapeutic target for endometrial cancer. PLoS ONE. 2017;12(12): e0189044.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Choi Y, Oh ST, Won M-A, Choi KM, Ko MJ, Seo D, et al. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2016;478(4):1674–81.

    Article  CAS  PubMed  Google Scholar 

  128. Symes AJ, Eilertsen M, Millar M, Nariculam J, Freeman A, Notara M, et al. Correction: quantitative analysis of BTF3, HINT1, NDRG1 and ODC1 protein over-expression in human prostate cancer tissue. PLoS ONE. 2014. https://doi.org/10.1371/annotation/80c6bb6d-657b-46be-ba77-3de5d528c89e.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Can Res. 2008;68(23):9735–45.

    Article  CAS  Google Scholar 

  130. Zhou Z, Lin Z, He Y, Pang X, Wang Y, Ponnusamy M, et al. The long noncoding RNA D63785 regulates chemotherapy sensitivity in human gastric cancer by targeting miR-422a. Mol Ther Nucleic Acids. 2018;12:405–19.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li P, Li Q, Zhang Y, Sun S, Liu S, Lu Z. MiR-422a targets MAPKK6 and regulates cell growth and apoptosis in colorectal cancer cells. Biomed Pharmacother. 2018;104:832–40.

    Article  CAS  PubMed  Google Scholar 

  132. Zou Y, Chen Y, Yao S, Deng G, Liu D, Yuan X, et al. MiR-422a weakened breast cancer stem cells properties by targeting PLP2. Cancer Biol Ther. 2018;19(5):436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86(2):263–74.

    Article  CAS  PubMed  Google Scholar 

  134. Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol. 1999;72(3):299–328.

    Article  CAS  PubMed  Google Scholar 

  135. Charli J-L, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, et al. The thyrotropin-releasing hormone-degrading ectoenzyme, a therapeutic target? Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00640.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, et al. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 2020;19(1):156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pusapati RV, Weaks RL, Rounbehler RJ, McArthur MJ, Johnson DG. E2F2 suppresses Myc-induced proliferation and tumorigenesis. Mol Carcinog. 2010;49(2):152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Qi Y, Zhang B, Wang J, Yao M. Upregulation of circular RNA hsa_circ_0007534 predicts unfavorable prognosis for NSCLC and exerts oncogenic properties in vitro and in vivo. Gene. 2018;676:79–85.

    Article  CAS  PubMed  Google Scholar 

  139. Ding D, Wang D, Shu Z. Hsa_circ_0007534 knockdown represses the development of colorectal cancer cells through regulating miR-613/SLC25A22 axis. Eur Rev Med Pharmacol Sci. 2020;24(6):3004–22.

    PubMed  Google Scholar 

  140. Rong X, Gao W, Yang X, Guo J. Downregulation of hsa_circ_0007534 restricts the proliferation and invasion of cervical cancer through regulating miR-498/BMI-1 signaling. Life Sci. 2019;235: 116785.

    Article  CAS  PubMed  Google Scholar 

  141. Chai Y, Xiao J, Du Y, Luo Z, Lei J, Zhang S, et al. A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system. Iran J Basic Med Sci. 2017;20(7):739–44.

    PubMed  PubMed Central  Google Scholar 

  142. Ecke TH, Stier K, Weickmann S, Zhao Z, Buckendahl L, Stephan C, et al. miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med. 2017;6(10):2252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fang Y-Y, Tan M-R, Zhou J, Liang L, Liu X-Y, Zhao K, et al. miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. Onco Targets Ther. 2019;12:9449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Qin C, Yang X, Jin G, Zhan Z. LncRNA TSLNC8 inhibits proliferation of breast cancer cell through the miR-214-3p/FOXP2 axis. Eur Rev Med Pharmacol Sci. 2019;23(19):8440–8.

    PubMed  Google Scholar 

  145. Yang L, Zhang L, Lu L, Wang Y. miR-214-3p regulates multi-drug resistance and apoptosis in retinoblastoma cells by targeting ABCB1 and XIAP. Onco Targets Ther. 2020;13:803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Song L, Xiao Y. Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation and invasion by targeting miR-593/MUC19 signal pathway. Biochem Biophys Res Commun. 2018;503(4):2603–10.

    Article  CAS  PubMed  Google Scholar 

  147. Sun X-H, Wang Y-T, Li G-F, Zhang N, Fan L. Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int. 2020;20(1):226.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zhao SY, Wang J, Ouyang SB, Huang ZK, Liao L. Salivary circular RNAs Hsa_Circ_0001874 and Hsa_Circ_0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma. Cell Physiol Biochem. 2018;47(6):2511–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in preparing the manuscript. The corresponding author designed the manuscript and was also involved in the writing the text. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ghasem Barati.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami Fath, M., Pourbagher Benam, S., Kouhi Esfahani, N. et al. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target?. Clin Transl Oncol 25, 2350–2364 (2023). https://doi.org/10.1007/s12094-023-03144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03144-2

Keywords

Navigation