Skip to main content

Advertisement

Log in

Long non-coding RNAs involved in retinoblastoma

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary.

Material and methods

Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages.

Conclusion

LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AFAP1-AS1:

Actin filament-associated protein 1 antisense RNA 1

ANRIL:

Antisense non-coding RNA in the INK4 locus

ATAD2:

ATPase family AAA domain-containing 2

ADPGK-AS1:

Adenosine diphosphate-dependent glucokinase antisense RNA 1

BDNF:

Brain-derived neurotrophic factor

BDNF-AS:

LncRNA brain-derived neurotrophic factor antisense

BANCR:

BRAF-activated non-coding RNA

BMI1:

Lymphoma Mo-MLV insertion region 1

CBR3:

Carbonyl reductase 3

ceRNAs:

Competitive endogenous RNAs

CASC9:

Cancer susceptibility candidate 9

CANT1:

CASC15-new-transcript 1

CCAT1:

Colon cancer-associated transcript 1

CXCR4:

C-X-C chemokine receptor type 4

DKK1:

Dickkopf-1

DFS:

Disease-free survival

DANCR:

Differentiation antagonizing non-protein coding RNA

EPHB2:

Eph receptor B2

E2F3:

E2F transcription factor 3

FTX:

Five prime to Xist

FEZF1-AS1:

FEZ family zinc finger 1 antisense RNA 1

FOXD2-AS1:

FOXD2 adjacent opposite strand RNA 1

HEIH:

High expression in hepatocellular carcinoma

HCP5:

HLA complex P5

HDAC9:

Histone deacetylase 9

HOTTIP:

HOXA transcript at the distal tip

HDAC:

Histone deacetylase

HOXA11-AS:

Homeobox A11 antisense RNA

HIF-1α:

Hypoxia-inducible factor-1α

H6PD:

Hexose-6-phosphate dehydrogenase/glucose 1-dehydrogenase

lncRNAs:

Long non-coding RNAs

IGF2:

Insulin-like growth factor 2

IGF2BP1:

IGF2 mRNA-binding protein 1

ILF3-AS1:

Interleukin enhancer-binding factor 3-antisense RNA 1

LEF1-AS1:

Lymphoid enhancer-binding factor 1 antisense RNA 1

LINC00152:

Long intergenic non-coding RNA 152

LASP1:

LIM and SH3 protein 1

Linc-PINT:

Long intergenic non-protein coding RNA, P53-induced transcript

MIAT:

Myocardial infarction‑associated transcript

MTF2:

Metal regulatory transcription factor 2

MIR17HG:

MiR-17-92a-1 cluster host gene

MIR7-3HG:

MIR7-3 host gene

MBNL1-AS1:

Muscle blind-like 1 antisense RNA 1

MMP9:

Matrix metallopeptidase 9

MEG3:

Maternally expressed gene 3

MT1JP:

Metallothionein 1J, pseudogene

MDR1:

Multi-drug resistance 1

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

NKILA:

NF-κB-interacting

NT5E:

5'-Nucleotidase ecto

NEK6:

NIMA-related kinases

PFKFB2:

6-Phosphofructo-2-kinase/fructose-2,6 biphosphatase 2

PVT1:

Plasmacytoma variant translocation 1

PAX6:

Paired box protein 6

PAX9:

Paired box gene 9

PEG10:

Paternally expressed gene 10

PLAC2:

Placenta-specific 2

PI3Kγ:

Phosphoinositide 3-kinase gamma

PANDAR:

Promoter of CDKN1A antisense DNA damage-activated RNA

RPE:

Retinal pigment epithelium

PlncRNA-1:

Prostate cancer-up-regulated lncRNA

PTEN:

Phosphatase and tensin homolog

RIN1:

Ras and rab interactor 1

RB:

Retinoblastoma

ROR:

Regulator of reprogramming

shRNA:

Short hairpin RNA

Sp/KLF:

SP/kruppel-like factor superfamily

SND1-IT1:

SND1 intronic transcript 1

SHCBP1:

SHC binding and spindle-associated 1

STX17:

Syntaxin 17

STC1:

Stanniocalcin-1

STX17:

Syntaxin 17

SI-HIF1A-AS1:

Hypoxia-inducible factor 1α-antisense

SOX2:

Sex determining region Y-box 2

STMN1:

Stathmin 1

SBK1:

SH3 domain-binding kinase 1

SNHG14:

Small nucleolar RNA host gene 14

SNHG16:

Small nucleolar RNA host gene 16

SNHG20:

Small nucleolar RNA host gene 20

TFAP2B:

Transcription factor activating enhancer-binding protein 2B

TUG1:

Taurine-upregulated gene 1

TRIM44:

Tripartite motif protein 44

TCL6:

T-cell leukemia/lymphoma 6

TRIM44:

Tripartite motif containing 44

TRPM2-AS:

TRPM2 antisense RNA

TP53TG1:

TP53 target 1

UCA1:

Urothelial carcinoma-associated 1

VCR:

Vincristine

WNK1:

With-no-lysine kinase 1

XIST:

X inactive specific transcript

ZNRD1-AS1:

Zinc ribbon domain-containing 1 antisense RNA 1

ZFPM2-AS1:

Zinc finger protein multitype 2 antisense RNA 1

ZEB2:

Zinc finger E-box-binding homeobox 2

5-Fu:

5-Fluorouracil

References

  • Ai K, Ni W, Li Z (2022) LncRNA ZFPM2-AS1 enhances retinoblastoma development by targeting the miR-3612/NT5E signaling axis. Critical Rev TM Eukaryotic Gene Expr 32(6):69–82

    Article  Google Scholar 

  • Akbar-Esfahani SA, Karimipoor M, Bahreini F, Soltania AR, Aletaha N, Mahdavinezhad A (2019) Diagnostic value of plasma long non-coding RNA HOTTIP as a non-invasive biomarker for colorectal cancer (a case-control study). Int J Mol Cell Med 8(4):240

    CAS  Google Scholar 

  • Ala U (2020) Competing endogenous RNAs, non-coding RNAs and diseases: an intertwined story. Cells 9(7):1574

    Article  CAS  Google Scholar 

  • Almater A, Alfaleh A, Alshomar K, AlMesfer S (2019) Retinoblastoma update on current management. Retinoblastoma—past, present and future. IntechOpen, London

    Google Scholar 

  • Alsharif H, Helmi H, Maktabi A (2019) Histopathological characteristics and classification for prognostic indicators. Retinoblastoma—past, present and future. IntechOpen, London, pp 89–99

    Google Scholar 

  • Azizidoost S, Ghaedrahmati F, Anbiyaee O, Ahmad Ali R, Cheraghzadeh M, Farzaneh M (2022) Emerging roles for lncRNA-NEAT1 in colorectal cancer. Cancer Cell Int 22(1):1–10

    Article  Google Scholar 

  • Bai T, Yokobori T, Altan B et al (2017) High STMN1 level is associated with chemo-resistance and poor prognosis in gastric cancer patients. Br J Cancer 116(9):1177–1185

    Article  CAS  Google Scholar 

  • Bao P, Yokobori T, Altan B et al (2017) High STMN1 expression is associated with cancer progression and chemo-resistance in lung squamous cell carcinoma. Ann Surg Oncol 24(13):4017–4024

    Article  Google Scholar 

  • Bi L, Han F, Zhang X, Li Y (2018) LncRNA MT1JP acts as a tumor inhibitor via reciprocally regulating Wnt/β-catenin pathway in retinoblastoma. Eur Rev Med Pharm Sci 22(13):4204–4214

    Google Scholar 

  • Bilke S, Schwentner R, Yang F et al (2013) Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 23(11):1797–1809

    Article  Google Scholar 

  • Chai P, Jia R, Jia R et al (2018) Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis. Nucleic Acids Res 46(12):6041–6056

    Article  CAS  Google Scholar 

  • Chen J, Guan Z (2022) Function of oncogene Mycn in adult neurogenesis and oligodendrogenesis. Mol Neurobiol 59(1):77–92

    Article  CAS  Google Scholar 

  • Chen F, Qi S, Zhang X, Wu J, Yang X, Wang R (2019) lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. Int J Oncol 54(4):1183–1194

    CAS  Google Scholar 

  • Chen X, Zhao S, Li Q, Xu C, Yu Y, Ge H (2020) LncRNA NEAT1 knockdown inhibits retinoblastoma progression by miR-3619-5p/LASP1 axis. Front Genet 11:574145

    Article  CAS  Google Scholar 

  • Chen Y, Lu B, Liu L, Pan X, Jiang C, Xu H (2021) Long non-coding RNA PROX1-AS1 knockdown upregulates microRNA-519d-3p to promote chemosensitivity of retinoblastoma cells via targeting SOX2. Cell Cycle 20(20):2149–2159

    Article  CAS  Google Scholar 

  • Cheng Y, Chang Q, Zheng B, Xu J, Li H, Wang R (2019) LncRNA XIST promotes the epithelial to mesenchymal transition of retinoblastoma via sponging miR-101. Eur J Pharm 843:210–216

    Article  CAS  Google Scholar 

  • Cieślik K, Rogowska A, Danowska M et al (2022) Evaluation of efficacy of indocyanine green enhanced transpupillary thermotherapy as a single treatment for recurrence of intraocular retinoblastoma. Klinika Oczna/acta Ophthalmologica Polonica 123(1):31–35

    Google Scholar 

  • Cui X, Liang T, Ji X, Shao Y, Zhao P, Li X. (2022) LINC00488 induces tumorigenicity in retinoblastoma by regulating microRNA-30a-5p/EPHB2 axis. Ocular Immunol Inflammation. 1–9

  • Diaz-Lagares A, Crujeiras AB, Lopez-Serra P et al (2016) Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci 113(47):E7535–E7544

    Article  CAS  Google Scholar 

  • Ding F, Jiang K, Sheng Y, Li C, Zhu H (2020) LncRNA MIR7-3HG executes a positive role in retinoblastoma progression via modulating miR-27a-3p/PEG10 axis. Exp Eye Res 193:107960

    Article  CAS  Google Scholar 

  • Ding Y, Liu H, Zhang C, Bao Z, Yu S (2022) Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG. Genetica 150(1):41–50

    Article  CAS  Google Scholar 

  • Dong C, Liu S, Lv Y et al (2016) Long non-coding RNA HOTAIR regulates proliferation and invasion via activating notch signalling pathway in retinoblastoma. J Biosci 41(4):677–687

    Article  CAS  Google Scholar 

  • Dong Y, Wan G, Yan P, Qian C, Li F, Peng G (2020) Long noncoding RNA LINC00324 promotes retinoblastoma progression by acting as a competing endogenous RNA for microRNA-769-5p, thereby increasing STAT3 expression. Aging (albany NY) 12(9):7729

    Article  CAS  Google Scholar 

  • Eiset SE, Funding M, Racher H et al (2022) Metachronous, non-pineal, trilateral retinoblastoma in a patient with a seemingly reduced-expressivity RB1 germline deletion. Clin Case Rep 10(3):e05498

    Article  Google Scholar 

  • Fabian ID, Abdallah E, Abdullahi SU et al (2022) The Global retinoblastoma outcome study: a prospective, cluster-based analysis of 4064 patients from 149 countries. Lancet Glob Health 10(8):e1128–e1140

    Article  Google Scholar 

  • Farooqi AA, Zahid R, Naureen H et al (2022) Regulation of ROCK1/2 by long non-coding RNAs and circular RNAs in different cancer types. Oncol Lett 23(5):1–9

    Article  Google Scholar 

  • Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. (2022) LncRNA MALAT1-related signaling pathways in osteosarcoma. Clin Translational Oncol.1–12

  • Feng X, Gong J, Li Q et al (2021a) Identification and functional annotation of differentially expressed long noncoding RNAs in retinoblastoma. Exp Ther Med 22(6):1447

    Article  CAS  Google Scholar 

  • Feng W, Zhu R, Ma J, Song H (2021b) LncRNA ELFN1-AS1 promotes retinoblastoma growth and invasion via regulating miR-4270/SBK1 axis. Cancer Management Res 13:1067

    Article  CAS  Google Scholar 

  • Fernandez-Diaz D, Rodriguez-Vidal C, Silva-Rodríguez P et al (2022) Applications of non-coding RNAs in patients with retinoblastoma. Front Genet 13:842509

    Article  CAS  Google Scholar 

  • Fu K, Zhang K, Zhang X (2022) LncRNA HOTAIR facilitates proliferation and represses apoptosis of retinoblastoma cells through the miR-20b-5p/RRM2/PI3K/AKT axis. Orphanet J Rare Dis 17(1):119

    Article  Google Scholar 

  • Gao Y, Lu X (2016) Decreased expression of MEG3 contributes to retinoblastoma progression and affects retinoblastoma cell growth by regulating the activity of Wnt/β-catenin pathway. Tumor Biology 37(2):1461–1469

    Article  CAS  Google Scholar 

  • Gao Y, Huang P, Zhang J (2017) Hypermethylation of MEG3 promoter correlates with inactivation of MEG3 and poor prognosis in patients with retinoblastoma. J Transl Med 15(1):1–10

    Article  Google Scholar 

  • Gao S, Chu Q, Liu X et al (2020) Long noncoding RNA HEIH promotes proliferation, migration and invasion of retinoblastoma cells through miR-194-5p/WEE1 Axis. Onco Targets Ther 13:12033

    Article  CAS  Google Scholar 

  • Gao Y, Luo X, Meng T, Zhu M, Tian M, Lu X (2020) DNMT1 protein promotes retinoblastoma proliferation by silencing MEG3 gene. Nan Fang Yi Ke Da Xue Xue Bao = J Southern Med Univ 40(9):1239–1245

    CAS  Google Scholar 

  • Gao Y, Luo X, Zhang J (2021a) Sp1-mediated up-regulation of lnc00152 promotes invasion and metastasis of retinoblastoma cells via the miR-30d/SOX9/ZEB2 pathway. Cell Oncol 44(1):61–76

    Article  CAS  Google Scholar 

  • Gao Y, Luo X, Zhang J (2021b) LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther 28(1):42–54

    Article  CAS  Google Scholar 

  • Gao Y, LU X. (2017) LncRNA-MEG3 mediated apoptosis of retinoblastoma by regulating P53 pathway. Recent Adv Ophthalmol. 301–304

  • Ghafouri-Fard S, Taheri M (2019) Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 118:109129

    Article  CAS  Google Scholar 

  • Grümme L, Biewald E, Reschke M et al (2022) Comparing efficacy and side effects of two systemic chemotherapy regimens for eye-preserving therapy in children with retinoblastoma. Pediatr Blood Cancer 69(2):e29362

    Article  Google Scholar 

  • Gu C, Li Q, Zhao S, Gao Y, Lu P (2021) Mechanism of long-chain non-coding RNA hypoxia-inducible factor 1α-antisense RNA 1 regulating chemotherapy resistance of retinoblastoma by inhibiting hypoxia-inducible factor-α expression. Mater Express 11(11):1874–1880

    Article  CAS  Google Scholar 

  • Gui F, Hong Z, You Z, Wu H, Zhang Y (2016) MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3K/AKT pathway. Cell Biol Int 40(12):1294–1302

    Article  CAS  Google Scholar 

  • Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER–mitochondria contact sites. Nature 495(7441):389–393

    Article  CAS  Google Scholar 

  • Han N, Zuo L, Chen H, Zhang C, He P, Yan H (2019) Long non-coding RNA homeobox A11 antisense RNA (HOXA11-AS) promotes retinoblastoma progression via sponging miR-506-3p. Onco Targets Ther 12:3509

    Article  CAS  Google Scholar 

  • Han S, Song L, Chen Y, Hou M, Wei X, Fan D (2020) The long non-coding RNA ILF3-AS1 increases the proliferation and invasion of retinoblastoma through the miR-132–3p/SMAD2 axis. Exp Cell Res 393(2):112087

    Article  CAS  Google Scholar 

  • Hanks J, Snyder S, Stoolman S (2021) Retinoblastoma: beyond the red reflex. Nurse Pract 46(9):10–12

    Article  Google Scholar 

  • Hao F, Mou Y, Zhang L, Wang S, Yang Y. (2018) LncRNA AFAP1-AS1 is a prognostic biomarker and serves as oncogenic role in retinoblastoma. Biosci Rep. 38(3)

  • He H, Qin M (2020) Long non-coding RNA LEF1-AS1 is involved in the progression of retinoblastoma through regulating the Wnt/β-catenin pathway. Clin Exp Pharm Physiol 47(5):886–891

    Article  CAS  Google Scholar 

  • He X, Chai P, Li F et al (2020) A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3. Mol Cancer 19(1):115

    Article  CAS  Google Scholar 

  • Huang J-L, Zheng L, Hu Y-W, Wang Q (2014) Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis 35(3):507–514

    Article  CAS  Google Scholar 

  • Huang J, Yang Y, Fang F, Liu K (2018) MALAT1 modulates the autophagy of retinoblastoma cell through miR-124-mediated stx17 regulation. J Cell Biochem 119(5):3853–3863

    Article  CAS  Google Scholar 

  • Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    Article  Google Scholar 

  • Ji F, Dai C, Xin M, Zhang J, Zhang Y, Liu S (2022) Long intergenic non-protein coding RNA 115 (LINC00115) aggravates retinoblastoma progression by targeting microRNA miR-489-3p that downregulates 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 2 (PFKFB2). Bioengineered 13(3):5330–5343

    Article  CAS  Google Scholar 

  • Jie Y, Ye L, Chen H et al (2020) ELFN1-AS1 accelerates cell proliferation, invasion and migration via regulating miR-497-3p/CLDN4 axis in ovarian cancer. Bioengineered 11(1):872–882

    Article  CAS  Google Scholar 

  • Jin S-J, Jin M-Z, Xia B-R, Jin W-L (2019a) Long non-coding RNA DANCR as an emerging therapeutic target in human cancers. Front Oncol 9:1225

    Article  Google Scholar 

  • Jin K, Wang S, Zhang Y et al (2019b) Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cell Mol Life Sci 76(21):4275–4289

    Article  CAS  Google Scholar 

  • Jögi A, Ehinger A, Hartman L, Alkner S (2019) Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS ONE 14(12):e0226150

    Article  Google Scholar 

  • Kaewkhaw R, Rojanaporn D (2020) Retinoblastoma: etiology, modeling, and treatment. Cancers 12(8):2304

    Article  CAS  Google Scholar 

  • Law AY, Yeung B, Ching L, Wong CK (2011) Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29. J Cell Biochem 112(8):2089–2096

    Article  CAS  Google Scholar 

  • Lee C, Kim JK (2022) Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities. Oncol Lett 23(6):1–12

    Article  CAS  Google Scholar 

  • Lee YJ, Oh H, Kim E et al (2019) Long noncoding RNA HOTTIP overexpression: a potential prognostic biomarker in prostate cancer. Pathol-Res Pract 215(11):152649

    Article  CAS  Google Scholar 

  • Li Z, Shen J, Chan MT, Wu WKK (2016) TUG 1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif 49(4):471–475

    Article  CAS  Google Scholar 

  • Li H, Jiang X, Niu X (2017) Long non-coding RNA reprogramming (ROR) promotes cell proliferation in colorectal cancer via affecting P53. Med Sci Monitor: Int Med J Exp Clin Res 23:919

    Article  CAS  Google Scholar 

  • Li Y, Liang Y, Sang Y et al (2018a) MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 9(1):14

    Article  Google Scholar 

  • Li L, Chen W, Wang Y, Tang L, Han M (2018b) Long non-coding RNA H19 regulates viability and metastasis, and is upregulated in retinoblastoma. Oncol Lett 15(6):8424–8432

    Google Scholar 

  • Li A, Yang J, Zhang T, Li L, Li M (2021) Long noncoding RNA TRPM2-AS promotes the growth, migration, and invasion of retinoblastoma via miR-497/WEE1 Axis. Front Pharm 12:592822

    Article  CAS  Google Scholar 

  • Liang Y, Wang H, Song R, Yin X (2022) lncRNA FOXD2-AS1 promotes the retinoblastoma cell viability and migration by sponging miR-31. BioMed Res Int 2022:1–11

    Google Scholar 

  • Liu Y, Helms C, Liao W et al (2008) A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4(4):e1000041

    Article  Google Scholar 

  • Liu T, Sui J, Zhang Y et al (2018a) Comprehensive analysis of a novel lncRNA profile reveals potential prognostic biomarkers in clear cell renal cell carcinoma. Oncol Rep 40(3):1503–1514

    CAS  Google Scholar 

  • Liu S, Yan G, Zhang J, Yu L (2018b) Knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) inhibits proliferation, migration, and invasion and promotes apoptosis by targeting miR-124 in retinoblastoma. Oncol Res 26(4):581–591

    Article  Google Scholar 

  • Liu H, Chen K, Wang L et al (2019) miR-613 inhibits Warburg effect in gastric cancer by targeting PFKFB2. Biochem Biophys Res Commun 515(1):37–43

    Article  CAS  Google Scholar 

  • Liu X, Li X, Li J (2021) Long non-coding RNA FEZF1-AS1 promotes growth and reduces apoptosis through regulation of miR-363-3p/PAX6 axis in retinoblastoma. Biochem Genet 59(3):637–651

    Article  CAS  Google Scholar 

  • Liu W, Yu C, Li J, Fang J. (2022) The roles of EphB2 in cancer. Front Cell Dev Biol. 10

  • Lloyd P, Westcott M, Kaliki S et al. (2022) The role of maternal age and birth order on the development of unilateral and bilateral retinoblastoma: a multicentre study. Eye. 1–5

  • Lu CW, Zhou DD, Xie T et al (2018) HOXA 11 antisense long noncoding RNA (HOXA 11-AS): a promising lnc RNA in human cancers. Cancer Med 7(8):3792–3799

    Article  CAS  Google Scholar 

  • Lu H, Zhang Z, Lu Y, Xiu W, Cui J (2021) LncRNA NEAT1 acts as an miR-148b-3p sponge to regulate ROCK1 inhibition of retinoblastoma growth. Cancer Management Res 13:5587

    Article  CAS  Google Scholar 

  • Luan L, Hu Q, Wang Y, Lu L, Ling J (2021a) Knockdown of lncRNA NEAT1 expression inhibits cell migration, invasion and EMT by regulating the miR-24-3p/LRG1 axis in retinoblastoma cells. Exp Ther Med 21(4):367

    Article  CAS  Google Scholar 

  • Luan L, Hu Q, Wang Y, Lu L, Ling J (2021b) Knockdown of lncRNA NEAT1 expression inhibits cell migration, invasion and EMT by regulating the miR-24-3p/LRG1 axis in retinoblastoma cells. Exp Ther Med 21(4):1–11

    Article  Google Scholar 

  • Lyu X, Ma Y, Wu F, Wang L, Wang L (2019) LncRNA NKILA inhibits retinoblastoma by downregulating lncRNA XIST. Curr Eye Res 44(9):975–979

    Article  CAS  Google Scholar 

  • Lyv X, Wu F, Zhang H, Lu J, Wang L, Ma Y (2020) Long noncoding RNA ZFPM2-AS1 knockdown restrains the development of retinoblastoma by modulating the MicroRNA-515/HOXA1/Wnt/β-Catenin axis. Invest Ophthalmol vis Sci 61(6):41–41

    Article  CAS  Google Scholar 

  • Machakuri K, Kaliki S (2022) Bilateral enucleation for retinoblastoma: a study of 14 patients. Oman J Ophthalmol 15(2):188

    Google Scholar 

  • Madhavan J, Mitra M, Mallikarjuna K et al (2009) KIF14 and E2F3 mRNA expression in human retinoblastoma and its phenotype association. Mol vis 15:235

    CAS  Google Scholar 

  • Martínez-Barriocanal Á, Arango D, Dopeso H (2020) PVT1 long non-coding RNA in gastrointestinal cancer. Front Oncol 10:38

    Article  Google Scholar 

  • Martins AG (2022) Retinoblastoma: a new technique for orbital exenteration. J Oncol Res Rev Rep. https://doi.org/10.47363/JONRR/2022(3)161

    Article  Google Scholar 

  • Meng X, Zhang Y, Hu Y, Zhong J, Jiang C, Zhang H (2021) LncRNA CCAT1 sponges miR-218-5p to promote EMT, cellular migration and invasion of retinoblastoma by targeting MTF2. Cell Signal 86:110088

    Article  CAS  Google Scholar 

  • Mushtaq A, Gondal HZ, Qayyum S, Raza A, Azhar F. (2022) Causes of delayed presentation of retinoblastoma in a tertiary care hospital of Pakistan. Pakistan J Ophthalmol 38(2)

  • Ni H, Chai P, Yu J et al (2020a) LncRNA CANT1 suppresses retinoblastoma progression by repellinghistone methyltransferase in PI3Kγ promoter. Cell Death Dis 11(5):1–15

    Article  Google Scholar 

  • Ni H, Chai P, Yu J et al (2020b) LncRNA CANT1 suppresses retinoblastoma progression by repellinghistone methyltransferase in PI3Kγ promoter. Cell Death Dis 11(5):306

    Article  CAS  Google Scholar 

  • Ni W, Li Z, Ai K (2022) lncRNA ZFPM2-AS1 promotes retinoblastoma progression by targeting microRNA miR-511-3p/paired box protein 6 (PAX6) axis. Bioengineered 13(1):1637–1649

    Article  CAS  Google Scholar 

  • Ozcan SC, Sarioglu A, Altunok TH et al (2020) PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells. Mol Cell Biochem 470(1):115–129

    Article  CAS  Google Scholar 

  • Padma M, Kumar N, Nesargi PS, Aruna Kumari BS, Appaji L, Viswanathan A (2020) Epidemiology and clinical features of retinoblastoma: a tertiary care center’s experience in India. South Asian J Cancer 9(1):56–58

    Article  Google Scholar 

  • Pan Z, Guo X, Shan J, Luo S (2018) LINC00324 exerts tumor-promoting functions in lung adenocarcinoma via targeting miR-615-5p/AKT1 axis. Eur Rev Med Pharm Sci 22(23):8333–8342

    Google Scholar 

  • Parra M, Verdin E (2010) Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10(4):454–460

    Article  CAS  Google Scholar 

  • Peng X, Yan J, Cheng F (2020) LncRNA TMPO-AS1 up-regulates the expression of HIF-1α and promotes the malignant phenotypes of retinoblastoma cells via sponging miR-199a-5p. Pathol Res Pract 216(4):152853

    Article  CAS  Google Scholar 

  • Plousiou M, Vannini I (2019) Non-coding RNAs in retinoblastoma. Front Genet 10:1155

    Article  CAS  Google Scholar 

  • Promelle V, Muthusami P, Kletke SN, Shaikh F, Gallie BL, Mallipatna A (2022) Correspondence on’ Intra-arterial chemotherapy for retinoblastoma: an updated systematic review and meta-analysis’ by Ravindran et al. J NeuroInterventional Surg 14(6):e6–e6

    Google Scholar 

  • Qi D, Wang M, Yu F (2019) RETRACTED: Knockdown of lncRNA-H19 inhibits cell viability, migration and invasion while promotes apoptosis via microRNA-143/RUNX2 axis in retinoblastoma. Biomed Pharmacother 109:798–805

    Article  CAS  Google Scholar 

  • Quan L-J, Wang W-J. (2019) FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma. Biosci Rep. 39(5)

  • Radin DP, Patel P (2017) BDNF: an oncogene or tumor suppressor? Anticancer Res 37(8):3983–3990

    CAS  Google Scholar 

  • Ruben M, Eiger-Moscovich M, Yaghy A, Tadepalli S, Shields CL (2022) Iodine-125 plaque radiotherapy for retinoblastoma recurrence following intra-arterial chemotherapy. J Pediatr Ophthalmol Strabismus 59(3):164–171

    Article  Google Scholar 

  • Rusakevich AM, Schefler AC. (2022) Retinoblastoma: recent trends in diagnosis and management. Curr Surg Rep.1–6

  • Saengwimol D, Chittavanich P, Laosillapacharoen N et al (2020) Silencing of the long noncoding RNA MYCNOS1 suppresses activity of MYCN-amplified retinoblastoma without RB1 mutation. Invest Ophthalmol vis Sci 61(14):8–8

    Article  CAS  Google Scholar 

  • Sassenberg M, Droop J, Schulz WA et al (2019) Upregulation of the long non-coding RNA CASC9 as a biomarker for squamous cell carcinoma. BMC Cancer 19(1):1–14

    Article  CAS  Google Scholar 

  • Shang Y (2018) LncRNA THOR acts as a retinoblastoma promoter through enhancing the combination of c-myc mRNA and IGF2BP1 protein. Biomed Pharmacother 106:1243–1249

    Article  CAS  Google Scholar 

  • Shang W, Yang Y, Zhang J, Wu Q (2018) Long noncoding RNA BDNF-AS is a potential biomarker and regulates cancer development in human retinoblastoma. Biochem Biophys Res Commun 497(4):1142–1148

    Article  CAS  Google Scholar 

  • Sheng L, Wu J, Gong X, Dong D, Sun X (2018) SP1-induced upregulation of lncRNA PANDAR predicts adverse phenotypes in retinoblastoma and regulates cell growth and apoptosis in vitro and in vivo. Gene 668:140–145

    Article  CAS  Google Scholar 

  • Shields CL, Lally SE (2019) Retinoblastoma. Ocular oncology. Springer, Berlin, pp 91–99

    Chapter  Google Scholar 

  • Soliman SE, Martínez S, De Nicola ML, Kiehl R, Krema H (2020) Molecular analysis confirms retinoblastoma diagnosis in a histologically undifferentiated retinal tumor in an adult. Ophthalmic Genet 41(4):350–353

    Article  Google Scholar 

  • Soliman S, Feng ZX, Gallie B (2022) Primary laser therapy as monotherapy for discrete retinoblastoma. Br J Ophthalmol 106(6):878–883

    Article  Google Scholar 

  • Solomon BJ, Loong HH, Summers Y et al (2022) Correlation between treatment effects on response rate and progression-free survival and overall survival in trials of targeted therapies in molecularly enriched populations. ESMO Open 7(2):100398

    Article  CAS  Google Scholar 

  • Song J, Zhang Z (2021) Long non-coding RNA SNHG20 promotes cell proliferation, migration and invasion in retinoblastoma via the miR-335-5p/E2F3 axis. Mol Med Rep 24(2):1–9

    Article  Google Scholar 

  • Song L, Qi Y, Lin M (2020) Long noncoding RNA PLAC2 regulates PTEN in retinoblastoma and participates in the regulation of cancer cell apoptosis. Oncol Lett 19(3):2489–2494

    CAS  Google Scholar 

  • Song W-P, Zheng S, Yao H-J et al (2020) Different transcriptome profiles between human retinoblastoma Y79 cells and an etoposide-resistant subline reveal a chemoresistance mechanism. BMC Ophthalmol 20(1):1–11

    Article  Google Scholar 

  • Su S, Gao J, Wang T, Wang J, Li H, Wang Z (2015) Long non-coding RNA BANCR regulates growth and metastasis and is associated with poor prognosis in retinoblastoma. Tumor Biology 36(9):7205–7211

    Article  CAS  Google Scholar 

  • Sun T, Song Y, Yu H, Luo X (2019) Identification of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis’s proliferates and anti-apoptotic effect on breast cancer using co-expression network analysis. Cancer Biol Ther 20(6):760–773

    Article  CAS  Google Scholar 

  • Sun X, Shen H, Liu S, Gao J, Zhang S (2020) Long noncoding RNA SNHG14 promotes the aggressiveness of retinoblastoma by sponging microRNA-124 and thereby upregulating STAT3 Retraction in/10.3892/ijmm. 2022.5126. Int J Mol Med 45(6):1685–1696

    CAS  Google Scholar 

  • Sun T, Liu Z, Zhang R et al (2020a) Long non-coding RNA LEF1-AS1 promotes migration, invasion and metastasis of colon cancer cells through miR-30-5p/SOX9 axis. Onco Targets Ther 13:2957

    Article  CAS  Google Scholar 

  • Sun X, Shen H, Liu S, Gao J, Zhang S (2020b) Long noncoding RNA SNHG14 promotes the aggressiveness of retinoblastoma by sponging microRNA-124 and thereby upregulating STAT3 Retraction. Int J Mol Med 45(6):1685–1696

    CAS  Google Scholar 

  • Tao S, Wang W, Liu P, Wang H, Chen W (2019) Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN. Korean J Physiol Pharmacol 23(6):449–458

    Article  CAS  Google Scholar 

  • Tong X, Gu P-C, Xu S-Z, Lin X-J (2015) Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 79(5):732–737

    Article  CAS  Google Scholar 

  • Tsachaki M, Mladenovic N, Štambergová H, Birk J, Odermatt A (2018) Hexose-6-phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfolded-protein response, calcium homeostasis, and redox balance. Faseb j 32(5):2690–2705

    Article  Google Scholar 

  • Vadie N, Saayman S, Lenox A et al (2015) MYCNOS functions as an antisense RNA regulating MYCN. RNA Biol 12(8):893–899

    Article  Google Scholar 

  • Vempuluru VS, Jakati S, Kaliki S (2021) Delayed metastasis in patients with intraocular retinoblastoma: a review of three cases. Eur J Ophthalmol 31(4):2042–2047

    Article  Google Scholar 

  • Villanueva G, Sampor C, Moreno F et al (2022) Subsequent malignant neoplasms in the pediatric age in retinoblastoma survivors in Argentina. Pediatric Blood Cancer 69:e29710

    Article  Google Scholar 

  • Wan T, Wang H, Gou M et al (2020) LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomed Pharmacother 125:109916

    Article  CAS  Google Scholar 

  • Wang JX, Yang Y, Li K (2018) Long noncoding RNA DANCR aggravates retinoblastoma through miR-34c and miR-613 by targeting MMP-9. J Cell Physiol 233(10):6986–6995

    Article  CAS  Google Scholar 

  • Wang JX, Yang Y, Li K (2018a) Long noncoding RNA DANCR aggravates retinoblastoma through miR-34c and miR-613 by targeting MMP-9. J Cell Physiol 233(10):6986–6995

    Article  CAS  Google Scholar 

  • Wang S, Liu J, Yang Y, Hao F, Zhang L (2018b) PlncRNA-1 is overexpressed in retinoblastoma and regulates retinoblastoma cell proliferation and motility through modulating CBR3. IUBMB Life 70(10):969–975

    Article  CAS  Google Scholar 

  • Wang L, Yang D, Tian R, Zhang H (2019) NEAT1 promotes retinoblastoma progression via modulating miR-124. J Cell Biochem 120(9):15585–15593

    Article  CAS  Google Scholar 

  • Wang Q, Zhu Y, Zuo G, Chen X, Cheng J, Zhang S (2020a) LINC00858 promotes retinoblastoma cell proliferation, migration and invasion by inhibiting miR-3182. Exp Ther Med 19(2):999–1005

    CAS  Google Scholar 

  • Wang D, You D, Pan Y, Liu P (2020b) Downregulation of lncRNA-HEIH curbs esophageal squamous cell carcinoma progression by modulating miR-4458/PBX3. Thoracic Cancer 11(7):1963–1971

    Article  CAS  Google Scholar 

  • Wang Y, Sun D, Sheng Y, Guo H, Meng F, Song T (2020c) XIST promotes cell proliferation and invasion by regulating miR-140-5p and SOX4 in retinoblastoma. World J Surg Oncol 18(1):1–8

    Article  Google Scholar 

  • Wang L, Wang C, Wu T, Sun F (2020d) Long non-coding RNA TP73-AS1 promotes TFAP2B-mediated proliferation, metastasis and invasion in retinoblastoma via decoying of miRNA-874-3p. J Cell Commun Signal 14(2):193–205

    Article  Google Scholar 

  • Wang L, Zhang Y, Xin X (2020e) Long non-coding RNA MALAT1 aggravates human retinoblastoma by sponging miR-20b-5p to upregulate STAT3. Pathol-Res Pract 216(6):152977

    Article  CAS  Google Scholar 

  • Wang Y, Wang J, Hao H, Luo X (2020f) lncRNA KCNQ1OT1 promotes the proliferation, migration and invasion of retinoblastoma cells by upregulating HIF-1α via sponging miR-153-3p. J Investig Med 68(8):1349–1356

    Article  Google Scholar 

  • Wang X, Su Y, Yin C (2021a) Long non-coding RNA (lncRNA) five prime to Xist (FTX) promotes retinoblastoma progression by regulating the microRNA-320a/with-no-lysine kinases 1 (WNK1) axis. Bioengineered 12(2):11622–11633

    Article  CAS  Google Scholar 

  • Wang L, Yi S, Wang R, Wang J (2021b) Long non-coding RNA KCNQ1OT1 promotes proliferation, migration and invasion via targeting miR-134 in retinoblastoma. J Gene Med 23(6):e3336

    Article  CAS  Google Scholar 

  • Wang H, Zhang Z, Zhang Y, Liu S, Li L (2021c) Long non-coding RNA TP53TG1 upregulates SHCBP1 to promote retinoblastoma progression by sponging miR-33b. Cell Transplant 30:09636897211025223

    Article  Google Scholar 

  • Wang L, Wu M, Zhou X (2022a) Long non-coding RNA UCA1 promotes retinoblastoma progression by modulating the miR-124/c-myc axis. Am J Transl Res 14(3):1592–1605

    CAS  Google Scholar 

  • Wang N, Fan H, Fu S et al (2022b) Long noncoding RNA UCA1 promotes carboplatin resistance in retinoblastoma cells by acting as a ceRNA of miR-206. Am J Cancer Res 12(5):2160–2172

    CAS  Google Scholar 

  • Wang H, Zhang Z, Zhang Y, Li L (2022c) Knockdown of the long noncoding RNA TUG1 suppresses retinoblastoma progression by disrupting the epithelial-mesenchymal transition. Cell Transplant 31:09636897221078026

    Article  Google Scholar 

  • Wang H, Shen G, Liu M, Mao L, Mao H (2022d) Expression and clinical significance of lncRNA TCL6 in serum of patients with preeclampsia. Exp Ther Med 23(1):1–8

    Article  Google Scholar 

  • Warda O, Naeem Z, Roelofs KA, Sagoo MS, Reddy MA. (2022) Retinoblastoma and vision. Eye.1–12

  • Wei J-H, Haddad A, Wu K-J et al (2015) A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat Commun 6(1):1–11

    Article  Google Scholar 

  • Wei D, Miao Y, Yu L, Wang D, Wang Y (2018) Downregulation of microRNA-198 suppresses cell proliferation and invasion in retinoblastoma by directly targeting PTEN. Mol Med Rep 18(1):595–602

    CAS  Google Scholar 

  • Wong ES, Choy RW, Zhang Y et al (2022) Global retinoblastoma survival and globe preservation: a systematic review and meta-analysis of associations with socioeconomic and health-care factors. Lancet Global Health 10:e380–e389

    Article  Google Scholar 

  • Wu X-Z, Cui H-P, Lv H-J, Feng L (2019) Knockdown of lncRNA PVT1 inhibits retinoblastoma progression by sponging miR-488-3p. Biomed Pharmacother 112:108627

    Article  CAS  Google Scholar 

  • Wu A, Zhou X, Mi L, Shen J (2020a) LINC00202 promotes retinoblastoma progression by regulating cell proliferation, apoptosis, and aerobic glycolysis through miR-204-5p/HMGCR axis. Open Life Sciences 15(1):437–448

    Article  CAS  Google Scholar 

  • Wu S, Gu Z, Wu Y, Wu W, Mao B, Zhao S (2020b) LINC00324 accelerates the proliferation and migration of osteosarcoma through regulating WDR66. J Cell Physiol 235(1):339–348

    Article  CAS  Google Scholar 

  • Wu J, Qian D, Sun X (2020c) Long noncoding RNAs as potential biomarkers in retinoblastoma: a systematic review and meta-analysis. Cancer Cell Int 20(1):201

    Article  CAS  Google Scholar 

  • Xia Z, Yang X, Wu S, et al. (2019) LncRNA TP73-AS1 down-regulates miR-139-3p to promote retinoblastoma cell proliferation. Biosci Rep. 39(5)

  • Xiao J, Lin L, Luo D et al (2020) Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance. Oncogenesis 9(3):1–15

    Article  Google Scholar 

  • Xie T, Pan S, Zheng H et al (2018) PEG10 as an oncogene: expression regulatory mechanisms and role in tumor progression. Cancer Cell Int 18(1):1–10

    Article  CAS  Google Scholar 

  • Xiu C, Song R, Jiang J (2021) TUG1 promotes retinoblastoma progression by sponging miR-516b-5p to upregulate H6PD expression. Transl Cancer Res 10(2):738–747

    Article  CAS  Google Scholar 

  • Xu C, Tian L (2020) LncRNA XIST promotes proliferation and epithelial-mesenchymal transition of retinoblastoma cells through sponge action of miR-142-5p. Eur Rev Med Pharm Sci 24(18):9256–9264

    CAS  Google Scholar 

  • Xu C, Hu C, Wang Y, Liu S (2019) Long noncoding RNA SNHG16 promotes human retinoblastoma progression via sponging miR-140-5p. Biomed Pharmacother 117:109153

    Article  CAS  Google Scholar 

  • Xu L, Li W, Shi Q et al (2020) MicroRNA-936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway. Oncol Rep 43(2):635–645

    CAS  Google Scholar 

  • Xu Y, Fu Z, Gao X, Wang R, Li Q (2021a) Long non-coding RNA XIST promotes retinoblastoma cell proliferation, migration, and invasion by modulating microRNA-191-5p/brain derived neurotrophic factor. Bioengineered 12(1):1587–1598

    Article  CAS  Google Scholar 

  • Xu X, Zhao Y, Duan G, Du B (2021b) Downregulation of MIAT reduces the proliferation and migratory and invasive abilities of retinoblastoma cells by sponging miR-665 and regulating LASP1. Exp Ther Med 22(5):1–11

    Article  Google Scholar 

  • Xu L, Zhu S, Tang A, Liu W (2021c) LncRNA MBLN1-AS1 inhibits the progression of retinoblastoma through targeting miR-338-5p-Wnt/β-catenin signaling pathway. Inflamm Res 70(2):217–227

    Article  CAS  Google Scholar 

  • Xu W-W, Jin J, Wu X-Y, Ren Q-L, Farzaneh M (2022) MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 22(1):1–9

    Article  CAS  Google Scholar 

  • Xue J-Y, Huang C, Wang W, Li H-B, Sun M, Xie M (2018) HOXA11-AS: a novel regulator in human cancer proliferation and metastasis. OncoTargets Therapy 11:4387

    Article  Google Scholar 

  • Xue Q, Jiang H, Wang J, Wei D (2021) LASP1 induces epithelial-mesenchymal transition in lung cancer through the TGF-β1/Smad/snail pathway. Canadian Respir J 2021:1–12

    Article  Google Scholar 

  • Yan G, Su Y, Ma Z, Yu L, Chen N (2019) Long noncoding RNA LINC00202 promotes tumor progression by sponging miR-3619-5p in retinoblastoma. Cell Struct Funct 44(1):51–60

    Article  Google Scholar 

  • Yan J, Deng YX, Cai YL, Cong WD (2022) LncRNA MIR17HG promotes the proliferation, migration, and invasion of retinoblastoma cells by up-regulating HIF-1α expression via sponging miR-155-5p. Kaohsiung J Med Sci 38(6):554–564

    Article  CAS  Google Scholar 

  • Yang M, Wei W (2019) Long non-coding RNAs in retinoblastoma. Pathol-Res Pract 215(8):152435

    Article  CAS  Google Scholar 

  • Yang G, Fu Y, Lu X, Wang M, Dong H, Li Q (2018) LncRNA HOTAIR/miR-613/c-met axis modulated epithelial-mesenchymal transition of retinoblastoma cells. J Cell Mol Med 22(10):5083–5096

    Article  CAS  Google Scholar 

  • Yang L, Zhang L, Lu L, Wang Y (2019) Long noncoding RNA SNHG16 sponges miR-182-5p and miR-128-3p to promote retinoblastoma cell migration and invasion by targeting LASP1. Onco Targets Ther 12:8653

    Article  CAS  Google Scholar 

  • Yang L, Li Q, Zhang X, Cao T (2020a) Long non-coding RNA XIST confers aggressive progression via miR-361-3p/STX17 in retinoblastoma cells. Eur Rev Med Pharm Sci 24(20):10433–10444

    Google Scholar 

  • Yang L, Zhang L, Lu L, Wang Y (2020b) LncRNA UCA1 increases proliferation and multidrug resistance of retinoblastoma cells through downregulating miR-513a-5p. DNA Cell Biol 39(1):69–77

    Article  CAS  Google Scholar 

  • Yang G, Zeng C, Liu Y, Li D, Cui J (2021) ZNRD1-AS1 knockdown alleviates malignant phenotype of retinoblastoma through miR-128-3p/BMI1 axis. Am J Translational Res 13(6):5866

    CAS  Google Scholar 

  • Yang Y, Peng XW. (2018) The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci Rep. 38(6)

  • Yao L, Yang L, Song H, Liu T, Yan H (2020) Silencing of lncRNA XIST suppresses proliferation and autophagy and enhances vincristine sensitivity in retinoblastoma cells by sponging miR-204-5p. Eur Rev Med Pharm Sci 24(7):3526–3537

    CAS  Google Scholar 

  • Yaqoob N, Mansoor S, Zia N, Aftab K, Kaleem B, Jamal S (2022) Chemotherapy induced histopathological changes in retinoblastoma, assessment of high risk predictive factors and its correlation with comorbid conditions. Pakistan J Med Sci 38(2):362

    Google Scholar 

  • Yin Y, Shen Q, Tao R et al (2018) Wee1 inhibition can suppress tumor proliferation and sensitize p53 mutant colonic cancer cells to the anticancer effect of irinotecan. Mol Med Rep 17(2):3344–3349

    CAS  Google Scholar 

  • Yin X, Liao Y, Xiong W, Zhang Y, Zhou Y, Yang Y (2020) Hypoxia-induced lncRNA ANRIL promotes cisplatin resistance in retinoblastoma cells through regulating ABCG2 expression. Clin Exp Pharm Physiol 47(6):1049–1057

    Article  CAS  Google Scholar 

  • Yin D-F, Zhou X-J, Li N, Liu H-J, Yuan H (2021) Long non-coding RNA SND1-IT1 accelerates cell proliferation, invasion and migration via regulating miR-132-3p/SMAD2 axis in retinoblastoma. Bioengineered 12(1):1189–1201

    Article  CAS  Google Scholar 

  • Yu J, Liu Y, Guo C et al (2017) Upregulated long non-coding RNA LINC00152 expression is associated with progression and poor prognosis of tongue squamous cell carcinoma. J Cancer 8(4):523

    Article  CAS  Google Scholar 

  • Yu J, Chen L, Bao Z et al (2020) BMI-1 promotes invasion and metastasis in endometrial adenocarcinoma and is a poor prognostic factor. Oncol Rep 43(5):1630–1640

    CAS  Google Scholar 

  • Yuan Z, Li Z (2020) Long noncoding RNA UCA1 facilitates cell proliferation and inhibits apoptosis in retinoblastoma by activating the PI3K/Akt pathway. Transl Cancer Res 9(2):1012–1022

    Article  CAS  Google Scholar 

  • Yuan X, Sun Z, Cui C (2021) Knockdown of lncRNA HOTTIP inhibits retinoblastoma progression by modulating the miR-101-3p/STC1 axis. Technol Cancer Res Treat 20:1533033821997831

    Article  CAS  Google Scholar 

  • Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D (2015) MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer 14(1):1–16

    Article  CAS  Google Scholar 

  • Zhang P-P, Wang Y-Q, Weng W-W et al (2017a) Linc00152 promotes cancer cell proliferation and invasion and predicts poor prognosis in lung adenocarcinoma. J Cancer 8(11):2042

    Article  Google Scholar 

  • Zhang H, Zhong J, Bian Z, Fang X, Peng Y, Hu Y (2017b) Long non-coding RNA CCAT1 promotes human retinoblastoma SO-RB50 and Y79 cells through negative regulation of miR-218-5p. Biomed Pharmacother 87:683–691

    Article  CAS  Google Scholar 

  • Zhang X, Li X, Tan F, Yu N, Pei H (2017c) STAT1 inhibits MiR-181a expression to suppress colorectal cancer cell proliferation through PTEN/Akt. J Cell Biochem 118(10):3435–3443

    Article  CAS  Google Scholar 

  • Zhang A, Shang W, Nie Q, Li T, Li S (2018) Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster. J Cell Biochem 119(4):3497–3509

    Article  CAS  Google Scholar 

  • Zhang Y, Xu L, Li A, Han X (2019) The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 110:400–408

    Article  CAS  Google Scholar 

  • Zhang T, Yang J, Gong F, Li L, Li A (2020a) Long non-coding RNA CASC9 promotes the progression of retinoblastoma via interacting with miR-145-5p. Cell Cycle 19(18):2270–2280

    Article  CAS  Google Scholar 

  • Zhang G, Yang W, Li D et al (2020b) LncRNA FEZF1-AS1 promotes migration, invasion and epithelial-mesenchymal transition of retinoblastoma cells by targeting miR-1236-3p. Mol Med Rep 22(5):3635–3644

    CAS  Google Scholar 

  • Zhang J, Liu C, Bu Z. (2021) Inhibitory effects of LncRNA ADPGK-AS1 on the biological behaviours of human retinoblastoma cells and its regulating mechanism. Chinese J Exp Ophthalmol. 207–215

  • Zhang H, Yang X, Xu Y, Li H. (2021) KCNQ1OT1 regulates the retinoblastoma cell proliferation, migration and SIRT1/JNK signaling pathway by targeting miR-124/SP1 axis. Biosci Rep. 41(1)

  • Zhao H, Wan J, Zhu Y (2020) Carboplatin inhibits the progression of retinoblastoma through IncRNA XIST/miR-200a-3p/NRP1 axis. Drug Des Dev Ther 14:3417

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Z, Gao M et al (2021) lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p. Open Med 16(1):931–943

    Article  CAS  Google Scholar 

  • Zhao N, Zhou L, Lu Q et al (2022) SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res 214:108887

    Article  CAS  Google Scholar 

  • Zheng R, Lin S, Guan L et al (2018) Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem Biophys Res Commun 498(4):1002–1008

    Article  CAS  Google Scholar 

  • Zhong W, Yang J, Li M, Li L, Li A (2019) Long noncoding RNA NEAT1 promotes the growth of human retinoblastoma cells via regulation of miR-204/CXCR4 axis. J Cell Physiol 234(7):11567–11576

    Article  CAS  Google Scholar 

  • Zhou X, Wang Y, Li Q, Ma D, Nie A, Shen X (2020) LncRNA Linc-PINT inhibits miR-523-3p to hamper retinoblastoma progression by upregulating Dickkopf-1 (DKK1). Biochem Biophys Res Commun 530(1):47–53

    Article  CAS  Google Scholar 

  • Zhu Y, Hao F (2021) Knockdown of long non-coding RNA HCP5 suppresses the malignant behavior of retinoblastoma by sponging miR-3619-5p to target HDAC9. Int J Mol Med 47(5):1–12

    Article  Google Scholar 

  • Zou W-W, Xu S-P (2018) Galangin inhibits the cell progression and induces cell apoptosis through activating PTEN and caspase-3 pathways in retinoblastoma. Biomed Pharmacother 97:851–863

    Article  CAS  Google Scholar 

  • Zou Z, Ma T, He X et al (2018) Long intergenic non-coding RNA 00324 promotes gastric cancer cell proliferation via binding with HuR and stabilizing FAM83B expression. Cell Death Dis 9(7):1–14

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AN, SHA, KR, SN, FGH, JP, MSH, AA, and MH have made contributions to the writing of the manuscript. MF and MF have made contributions to the revision of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maryam Farzaneh or Mostafa Feghhi.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrolahi, A., Azizidoost, S., Radoszkiewicz, K. et al. Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 149, 401–421 (2023). https://doi.org/10.1007/s00432-022-04398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04398-z

Keywords

Navigation