Skip to main content

Advertisement

Log in

Lung microbiome: an emerging player in lung cancer pathogenesis and progression

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boesch M, Horvath L, Baty F, Pircher A, Wolf D, Spahn S, et al. Compartmentalization of the host microbiome: how tumor microbiota shapes checkpoint immunotherapy outcome and offers therapeutic prospects. J Immunotherapy Cancer. 2022;10(11):e005401.

    Article  Google Scholar 

  3. Mitchell AB, Glanville AR. The human respiratory microbiome: implications and impact. Semin Respir Crit Care Med. 2018;39(2):199–212.

    Article  PubMed  Google Scholar 

  4. Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precision Oncol. 2020;4(1):33.

    Article  CAS  Google Scholar 

  5. Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med (Lond). 2017;17(6):525–9.

    Article  PubMed  Google Scholar 

  6. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384(9944):691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovaleva OV, Romashin D, Zborovskaya IB, Davydov MM, Shogenov MS, Gratchev A. Human lung microbiome on the way to cancer. J Immunol Res. 2019;2019:1394191.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carney SM, Clemente JC, Cox MJ, Dickson RP, Huang YJ, Kitsios GD, et al. Methods in lung microbiome research. Am J Respir Cell Mol Biol. 2020;62(3):283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maddi A, Sabharwal A, Violante T, Manuballa S, Genco R, Patnaik S, et al. The microbiome and lung cancer. J Thorac Dis. 2019;11(1):280–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, et al. Role of lung microbiome in innate immune response associated with chronic lung diseases. Front Med. 2020;7:554.

    Article  Google Scholar 

  11. Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramirez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, et al. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends in cancer. 2020;6(2):86–97.

    Article  CAS  PubMed  Google Scholar 

  13. Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes, and the immune system. Immunity. 2017;46(4):549–61.

    Article  CAS  PubMed  Google Scholar 

  14. Dong Q, Chen ES, Zhao C, Jin C. Host-microbiome interaction in lung cancer. Front Immunol. 2021;12:679829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sethi S. Bacterial infection and the pathogenesis of COPD. Chest. 2000;117(5 Suppl 1):286S-S291.

    Article  CAS  PubMed  Google Scholar 

  16. Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol. 2017;2017:5035371.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation? Trends Mol Med. 2009;15(6):245–53.

    Article  CAS  PubMed  Google Scholar 

  19. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell. 2019;176(5):998-1013e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bao Z, Lu G, Cui D, Yao Y, Yang G, Zhou J. IL-17A-producing T cells are associated with the progression of lung adenocarcinoma. Oncol Rep. 2016;36(2):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A. 2014;111(15):5664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma QY, Huang DY, Zhang HJ, Wang S, Chen XF. Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5(+)CD4(+) T cells in non-small cell lung cancer. Int Immunopharmacol. 2017;52:305–9.

    Article  CAS  PubMed  Google Scholar 

  24. Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018;24(13):3528–38.

    Article  PubMed  Google Scholar 

  25. Young MR. Th17 cells in protection from tumor or promotion of tumor progression. J Clin Cell Immunol. 2016;7(3):431.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 2018;142(4):769–78.

    Article  CAS  PubMed  Google Scholar 

  27. Tsay JJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med. 2018;198(9):1188–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters BA, Hayes RB, Goparaju C, Reid C, Pass HI, Ahn J. The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiol Biomarkers Prev. 2019;28(4):731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang K, Huang Y, Zhang Z, Liao J, Ding Y, Fang X, et al. A preliminary study of microbiota diversity in saliva and bronchoalveolar lavage fluid from patients with primary bronchogenic carcinoma. Med Sci Monit. 2019;25:2819–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang D, Su X, Yuan M, Zhang S, He J, Deng Q, et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am J Cancer Res. 2019;9(9):2047–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yan X, Yang M, Liu J, Gao R, Hu J, Li J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015;5(10):3111–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Leng Q, Holden VK, Deepak J, Todd NW, Jiang F. Microbiota biomarkers for lung cancer. Diagnostics. 2021;11(3):407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rybojad P, Los R, Sawicki M, Tabarkiewicz J, Malm A. Anaerobic bacteria colonizing the lower airways in lung cancer patients. Folia Histochem Cytobiol. 2011;49(2):263–6.

    Article  PubMed  Google Scholar 

  35. Cheng C, Wang Z, Wang J, Ding C, Sun C, Liu P, et al. Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Translat Lung Cancer Res. 2020;9(3):693–704.

    Article  CAS  Google Scholar 

  36. Jin J, Gan Y, Liu H, Wang Z, Yuan J, Deng T, et al. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: a multiple comparative study design with independent validation. Lung Cancer. 2019;136:129–35.

    Article  PubMed  Google Scholar 

  37. Greathouse KL, White JR, Vargas AJ, Bliskovsky VV, Beck JA, von Muhlinen N, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 2018;19(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang W, Luo J, Dong X, Zhao S, Hao Y, Peng C, et al. Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. J Cancer. 2019;10(7):1651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang J, Mu X, Wang Y, Zhu D, Zhang J, Liang C, et al. Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Front Oncol. 2018;8:520.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, O’Brien JL, Ajami NJ, Scheurer ME, Amirian ES, Armstrong G, et al. lung tissue microbial profile in lung cancer is distinct from emphysema. Am J Cancer Res. 2018;8(9):1775–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Najafi S, Abedini F, AzimzadehJamalkandi S, Shariati P, Ahmadi A, Gholami FM. The composition of lung microbiome in lung cancer: a systematic review and meta-analysis. BMC Microbiol. 2021;21(1):315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li KJ, Chen ZL, Huang Y, Zhang R, Luan XQ, Lei TT, et al. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir Res. 2019;20(1):272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hosgood HD 3rd, Sapkota AR, Rothman N, Rohan T, Hu W, Xu J, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen. 2014;55(8):643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marshall EA, Filho FSL, Sin DD, Lam S, Leung JM, Lam WL. Distinct bronchial microbiome precedes clinical diagnosis of lung cancer. Mol Cancer. 2022;21(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martins D, Mendes F, Schmitt F. Microbiome: a supportive or a leading actor in lung cancer? Pathobiology. 2021;88(2):198–207.

    Article  CAS  PubMed  Google Scholar 

  46. Franzin R, Netti GS, Spadaccino F, Porta C, Gesualdo L, Stallone G, et al. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: where do we stand? Front Immunol. 2020;11:574271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruiz-Patino A, Barron F, Cardona AF, Corrales L, Mas L, Martin C, et al. Antibiotics impair immune checkpoint inhibitor effectiveness in Hispanic patients with non-small cell lung cancer (AB-CLICaP). Thoracic cancer. 2020;11(9):2552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  CAS  PubMed  Google Scholar 

  52. Botticelli A, Vernocchi P, Marini F, Quagliariello A, Cerbelli B, Reddel S, et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med. 2020;18(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 2019;14(8):1378–89.

    Article  CAS  PubMed  Google Scholar 

  54. Wojas-Krawczyk K, Kalinka E, Grenda A, Krawczyk P, Milanowski J. Beyond PD-L1 markers for lung cancer immunotherapy. Internat J Molecular Sci. 2019;20(8):1915.

    Article  CAS  Google Scholar 

  55. Carbone C, Piro G, Di Noia V, D’Argento E, Vita E, Ferrara MG, et al. Lung and gut microbiota as potential hidden driver of immunotherapy efficacy in lung cancer. Mediators Inflamm. 2019;2019:7652014.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boesch M, Baty F, Albrich WC, Flatz L, Rodriguez R, Rothschild SI, et al. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology. 2021;10(1):1988403.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chu S, Cheng Z, Yin Z, Xu J, Wu F, Jin Y, et al. Airway fusobacterium is associated with poor response to immunotherapy in lung cancer. Onco Targets Ther. 2022;15:201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jang HJ, Choi JY, Kim K, Yong SH, Kim YW, Kim SY, et al. Relationship of the lung microbiome with PD-L1 expression and immunotherapy response in lung cancer. Respir Res. 2021;22(1):322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Georgiou K, Marinov B, Farooqi AA, Gazouli M. Gut microbiota in lung cancer: where do we stand? Internat J Molecular Sci. 2021;22(19):10429.

    Article  CAS  Google Scholar 

  60. Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy. Front Oncol. 2021;11:720842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieers G, Guery B, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020;11:301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Y, Liu Y, Li S, Peng Z, Liu X, Chen J, et al. Role of lung and gut microbiota on lung cancer pathogenesis. J Cancer Res Clin Oncol. 2021;147(8):2177–86.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pizzo F, Maroccia Z, HammarbergFerri I, Fiorentini C. Role of the microbiota in lung cancer: insights on prevention and treatment. Int J Molecular Sci. 2022;23(11):6138.

    Article  Google Scholar 

  65. Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  CAS  PubMed  Google Scholar 

  66. Gomatou G, Syrigos N, Vathiotis IA, Kotteas EA. Tumor dormancy: implications for invasion and metastasis. Internat J Molecular Sci. 2021;22(9):4862.

    Article  CAS  Google Scholar 

  67. Jamil A, Kasi A. Lung metastasis. Treasure Island: StatPearls; 2022.

    Google Scholar 

  68. Stella GM, Kolling S, Benvenuti S, Bortolotto C. Lung-seeking metastases. Cancers (Basel). 2019;11(7):1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gerull WD, Puri V, Kozower BD. The epidemiology and biology of pulmonary metastases. J Thorac Dis. 2021;13(4):2585–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cai HZ, Zhang H, Yang J, Zeng J, Wang H. Preliminary assessment of viral metagenome from cancer tissue and blood from patients with lung adenocarcinoma. J Med Virol. 2021;93(8):5126–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Gomatou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvela, A., Veloudiou, OZ., Karachaliou, A. et al. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 25, 2365–2372 (2023). https://doi.org/10.1007/s12094-023-03139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03139-z

Keywords

Navigation