Skip to main content

The Microbiome Associated with Lung Cancer

  • Chapter
  • First Online:
Microbiome and Cancer

Abstract

Recent studies on the lung microbiome have renewed the interest in understanding the relationship between microbes and lung diseases. The complex symbiotic relationship between microbiota and host have led researchers to postulate that many host diseases, including cancer, are directly associated with the commensal microbiome. Evidence suggests that the lung microbiome may contribute to local host inflammatory changes, which include the Th17 response. In lung cancer, studies suggest that lung dysbiosis may affect different stages of carcinogenesis. In this article, we review the latest knowledge gained from microbiome studies and explore possible mechanisms of microbe-host interaction that may have relevance to lung cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tay SK (2012) Cervical cancer in the human papillomavirus vaccination era. Curr Opin Obstet Gynecol 24:3–7

    Article  PubMed  Google Scholar 

  3. Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, Orentreich N, Vogelman JH, Friedman GD (1994) Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330:1267–1271

    Article  CAS  PubMed  Google Scholar 

  4. Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13:233–245

    Article  CAS  PubMed  Google Scholar 

  5. Silverberg MJ, Lau B, Achenbach CJ, Jing Y, Althoff KN, D'Souza G, Engels EA, Hessol NA, Brooks JT, Burchell AN, Gill MJ, Goedert JJ, Hogg R, Horberg MA, Kirk GD, Kitahata MM, Korthuis PT, Mathews WC, Mayor A, Modur SP, Napravnik S, Novak RM, Patel P, Rachlis AR, Sterling TR, Willig JH, Justice AC, Moore RD, Dubrow R (2015) Cumulative Incidence of cancer among persons with HIV in North America: A COHORT STUDY. Ann Intern Med 163:507–518

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gleeson K, Eggli DF, Maxwell SL (1997) Quantitative aspiration during sleep in normal subjects. Chest 111:1266–1272

    Article  CAS  PubMed  Google Scholar 

  7. Cvejic L, Harding R, Churchward T, Turton A, Finlay P, Massey D, Bardin PG, Guy P (2011) Laryngeal penetration and aspiration in individuals with stable COPD. Respirology 16:269–275

    Article  PubMed  Google Scholar 

  8. Morse CA, Quan SF, Mays MZ, Green C, Stephen G, Fass R (2004) Is there a relationship between obstructive sleep apnea and gastroesophageal reflux disease? Clin Gastroenterol Hepatol 2:761–768

    Article  PubMed  Google Scholar 

  9. Teramoto S, Ohga E, Matsui H, Ishii T, Matsuse T, Ouchi Y (1999) Obstructive sleep apnea syndrome may be a significant cause of gastroesophageal reflux disease in older people. J Am Geriatr Soc 47:1273–1274

    Article  CAS  PubMed  Google Scholar 

  10. Field SK, Underwood M, Brant R, Cowie RL (1996) Prevalence of gastroesophageal reflux symptoms in asthma. Chest 109:316–322

    Article  CAS  PubMed  Google Scholar 

  11. Scott RB, O'Loughlin EV, Gall DG (1985) Gastroesophageal reflux in patients with cystic fibrosis. J Pediatr 106:223–227

    Article  CAS  PubMed  Google Scholar 

  12. Koh WJ, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP, Kim H, Kwon OJ (2007) Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 131:1825–1830

    Article  PubMed  Google Scholar 

  13. Adams RI, Bateman AC, Bik HM, Meadow JF (2015) Microbiota of the indoor environment: a meta-analysis. Microbiome 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miletto M, Lindow SE (2015) Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome 3:61

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prussin AJ II, Marr LC (2015) Sources of airborne microorganisms in the built environment. Microbiome 3:78

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leung MH, Wilkins D, Li EK, Kong FK, Lee PK (2014) Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol 80:6760–6770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Chen H, Berger KI, Goldring RM, Rom WN, Blaser MJ, Weiden MD (2013) Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1:19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1:16031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963

    Article  PubMed  PubMed Central  Google Scholar 

  20. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6:e16384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM (2013) Comparison of the respiratory microbiome in healthy non-smokers and smokers. Am J Respir Crit Care Med 187:1067–1075

    Article  PubMed  PubMed Central  Google Scholar 

  22. Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman FD, Collman RG (2010) Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 5:e15216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pradhan D, Segal LN, Kulkarni R, Chung S, Rom WN, Weiden MD, Oppenheimer BW, Berger KI, Goldring RM (2013) Bronchial reactivity in early emphysema may be associated with local neutrophilic inflammation. Am J Respir Crit Care Med:A1110

    Google Scholar 

  24. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogg JC (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080

    Article  PubMed  PubMed Central  Google Scholar 

  25. Molyneaux PL, Mallia P, Cox MJ, Footitt J, Willis-Owen SAG, Homola D, Trujillo-Torralbo M-B, Elkin S, Kon OM, Cookson WOC, Moffatt MF, Johnston SL (2013) Outgrowth of the bacterial airway microbiome following rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201302-0341OC

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sethi S, Murphy TF (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359:2355–2365

    Article  CAS  PubMed  Google Scholar 

  27. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 7:e47305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, Ko JP, Rom WN, Blaser MJ, Weiden MD (2017) Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax 72:13–22

    Article  PubMed  Google Scholar 

  29. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  30. Schreiber H, Nettesheim P, Lijinsky W, Richter CB, Walburg HE Jr (1972) Induction of lung cancer in germfree, specific-pathogen-free, and infected rats by N-nitrosoheptamethyleneimine: enhancement by respiratory infection. J Natl Cancer Inst 49:1107–1114

    CAS  PubMed  Google Scholar 

  31. Melkamu T, Qian X, Upadhyaya P, O'Sullivan MG, Kassie F (2013) Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. Vet Pathol 50:895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaturvedi AK, Gaydos CA, Agreda P, Holden JP, Chatterjee N, Goedert JJ, Caporaso NE, Engels EA (2010) Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol Biomark Prev 19:1498–1505

    Article  CAS  Google Scholar 

  33. Zhang H, Garcia Rodriguez LA, Hernandez-Diaz S (2008) Antibiotic use and the risk of lung cancer. Cancer Epidemiol Biomark Prev 17:1308–1315

    Article  CAS  Google Scholar 

  34. Hosgood HD 3rd, Sapkota AR, Rothman N, Rohan T, Hu W, Xu J, Vermeulen R, He X, White JR, Wu G, Wei F, Mongodin EF, Lan Q (2014) The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen 55:643–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan X, Yang M, Liu J, Gao R, Hu J, Li J, Zhang L, Shi Y, Guo H, Cheng J, Razi M, Pang S, Yu X, Hu S (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5:3111–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, Landi MT (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hasegawa A, Sato T, Hoshikawa Y, Ishida N, Tanda N, Kawamura Y, Kondo T, Takahashi N (2014) Detection and identification of oral anaerobes in intraoperative bronchial fluids of patients with pulmonary carcinoma. Microbiol Immunol 58:375–381

    Article  CAS  PubMed  Google Scholar 

  38. Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD (2005) Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 60:570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR (2003) Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med 167:587–592

    Article  PubMed  Google Scholar 

  40. Bandi V, Apicella MA, Mason E, Murphy TF, Siddiqi A, Atmar RL, Greenberg SB (2001) Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis. Am J Respir Crit Care Med 164:2114–2119

    Article  CAS  PubMed  Google Scholar 

  41. Moghaddam SJ, Li H, Cho SN, Dishop MK, Wistuba II, Ji L, Kurie JM, Dickey BF, Demayo FJ (2009) Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am J Respir Cell Mol Biol 40:443–453

    Article  CAS  PubMed  Google Scholar 

  42. Moghaddam SJ, Ochoa CE, Sethi S, Dickey BF (2011) Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer. Int J Chron Obstruct Pulmon Dis 6:113–123

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winstone TA, Man SFP, Hull M, Montaner JS, Sin DD (2013) Epidemic of lung cancer in patients with HIV infection. Chest 143:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, Sodergren E, Mitreva M, Abubucker S, Martin J, Yao G, Campbell TB, Flores SC, Ackerman G, Stombaugh J, Ursell L, Beck JM, Curtis JL, Young VB, Lynch SV, Huang L, Weinstock GM, Knox KS, Twigg H, Morris A, Ghedin E, Bushman FD, Collman RG, Knight R, Fontenot AP (2013) Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med 187:1110–1117

    Article  PubMed  PubMed Central  Google Scholar 

  45. Twigg HL 3rd, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q, Mi D, Katz BP, Sodergren E, Weinstock GM (2016) Effect of advanced HIV infection on the respiratory microbiome. Am J Respir Crit Care Med 194:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shenoy MK, Iwai S, Lin DL, Worodria W, Ayakaka I, Byanyima P, Kaswabuli S, Fong S, Stone S, Chang E, Davis JL, Faruqi AA, Segal MR, Huang L, Lynch SV (2017) Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am J Respir Crit Care Med 195:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Segal LN, Clemente JC, Li Y, Ruan C, Cao J, Danckers M, Morris A, Tapyrik S, Wu BG, Diaz P, Calligaro G, Dawson R, van Zyl-Smit RN, Dheda K, Rom WN, Weiden MD (2017) Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe 21:530–537 e534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merlos A, Rodriguez P, Barcena-Uribarri I, Winterhalter M, Benz R, Vinuesa T, Moya JA, Vinas M (2015) Toxins secreted by bacillus isolated from lung adenocarcinomas favor the penetration of toxic substances. Front Microbiol 6:1301

    Article  PubMed  PubMed Central  Google Scholar 

  49. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166

    Article  CAS  PubMed  Google Scholar 

  50. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ (2003) Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56:171–182

    Article  CAS  PubMed  Google Scholar 

  51. Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F, Seikour A, Charachon A, Karoui M, Leroy K, Farcet JP, Sobhani I (2008) High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut 57:772–779

    Article  PubMed  Google Scholar 

  52. Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10:R95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK, Sasaki H (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 175:6177–6189

    Article  CAS  PubMed  Google Scholar 

  54. Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, Zhu B, Chen Z (2010) Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 69:348–354

    Article  PubMed  Google Scholar 

  55. Barbi J, Pardoll D, Pan F (2013) Metabolic control of the Treg/Th17 axis. Immunol Rev 252:52–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13:800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B (2006) The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 177:5122–5128

    Article  CAS  PubMed  Google Scholar 

  59. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, Yamada T, Egami S, Hoshii T, Hirao A, Matsuda S, Koyasu S (2012) PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep 1:360–373

    Article  CAS  PubMed  Google Scholar 

  61. Liu H, Yao S, Dann SM, Qin H, Elson CO, Cong Y (2013) ERK differentially regulates Th17- and Treg-cell development and contributes to the pathogenesis of colitis. Eur J Immunol 43:1716–1726

    Article  CAS  PubMed  Google Scholar 

  62. Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, Cohn LB, Rogoz A, Dallner OS, Moraes-Vieira PM, Domingos AI, Mucida D (2015) Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol 194:5253–5260

    Article  CAS  PubMed  Google Scholar 

  63. Burton NO, Furuta T, Webster AK, Kaplan REW, Baugh LR, Arur S, Horvitz HR (2017) Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat Cell Biol 19:252–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muller A (2012) Multistep activation of the Helicobacter pylori effector CagA. J Clin Invest 122:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gustafson AM, Soldi R, Anderlind C, Scholand MB, Qian J, Zhang X, Cooper K, Walker D, McWilliams A, Liu G, Szabo E, Brody J, Massion PP, Lenburg ME, Lam S, Bild AH, Spira A (2010) Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med 2:26ra25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Scrima M, De Marco C, Fabiani F, Franco R, Pirozzi G, Rocco G, Ravo M, Weisz A, Zoppoli P, Ceccarelli M, Botti G, Malanga D, Viglietto G (2012) Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS One 7:e30427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Spoerke JM, O'Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK, Haverty PM, Pandita A, Mohan S, Sampath D, Friedman LS, Ross L, Hampton GM, Amler LC, Shames DS, Lackner MR (2012) Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res 18:6771–6783

    Article  CAS  PubMed  Google Scholar 

  68. Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H, Kobayashi Y, Yano M, Fujii Y (2006) PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54:209–215

    Article  PubMed  Google Scholar 

  69. Ha NH, Park DG, Woo BH, Kim da J, Choi JI, Park BS, Kim YD, Lee JH, Park HR (2016) Porphyromonas gingivalis increases the invasiveness of oral cancer cells by upregulating IL-8 and MMPs. Cytokine 86:64–72

    Article  CAS  PubMed  Google Scholar 

  70. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J (2016) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. https://doi.org/10.1136/gutjnl-2016-312580

    Article  PubMed  CAS  Google Scholar 

  71. Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsay JJ, Wu BG, Badri MH, et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med 2018;198:1188–98

    Article  PubMed  PubMed Central  Google Scholar 

  73. Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome biology 2018;19:123

    Google Scholar 

  74. Cheng M, Qian L, Shen G, Bian G, Xu T, Xu W, Shen G, Hu S (2014) Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism. Cancer Res 74:4030–4041

    Article  CAS  PubMed  Google Scholar 

  75. Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds PN, Jersmann H, Hodge S (2014) Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-gamma by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol 178:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA (2002) The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 132:1012–1017

    Article  CAS  PubMed  Google Scholar 

  77. Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza GL, Shingu K, Hirota K (2008) LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal 10:983–995

    Article  CAS  PubMed  Google Scholar 

  78. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V, Johnson RS (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Phys 275:L818–L826

    Article  CAS  Google Scholar 

  80. Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279:14871–14878

    Article  CAS  PubMed  Google Scholar 

  81. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang Q, Hu DF, Rui Y, Jiang AB, Liu ZL, Huang LN (2014) Prognosis value of HIF-1alpha expression in patients with non-small cell lung cancer. Gene 541:69–74

    Article  CAS  PubMed  Google Scholar 

  83. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karoor V, Le M, Merrick D, Fagan KA, Dempsey EC, Miller YE (2012) Alveolar hypoxia promotes murine lung tumor growth through a VEGFR-2/EGFR-dependent mechanism. Cancer Prev Res (Phila) 5:1061–1071

    Article  CAS  Google Scholar 

  85. Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM, Bachman MA (2014) Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1alpha and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect Immun 82:3826–3836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Vizcaino MI, Crawford JM (2015) The colibactin warhead crosslinks DNA. Nat Chem 7:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ceelen LM, Decostere A, Ducatelle R, Haesebrouck F (2006) Cytolethal distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiol Res 161:109–120

    Article  CAS  PubMed  Google Scholar 

  88. Schumacker PT Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27:156–157

    Article  CAS  PubMed  Google Scholar 

  89. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499

    Article  CAS  PubMed  Google Scholar 

  90. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, Nicod LP, Lloyd CM, Marsland BJ (2014) Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 20:642–647

    Article  CAS  PubMed  Google Scholar 

  91. Starkey MR, Nguyen DH, Brown AC, Essilfie AT, Kim RY, Yagita H, Horvat JC, Hansbro PM (2015) PD-L1 promotes early-life chlamydia respiratory infection-induced severe allergic airway disease. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2015-0204OC

    Article  CAS  PubMed  Google Scholar 

  92. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, Chen PL, Hwu P, Allison JP, Futreal A, Wargo JA, Sharma P (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167:397–404 e399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Sloane RS, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Sanchez EMR, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC et al (2017) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. https://doi.org/10.1126/science.aan4236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2017) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. https://doi.org/10.1126/science.aan3706

    Article  PubMed  CAS  Google Scholar 

  97. Magouliotis DE, Tasiopoulou VS, Molyvdas PA, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG (2014) Airways microbiota: Hidden Trojan horses in asbestos exposed individuals? Med Hypotheses 83:537–540

    Article  CAS  PubMed  Google Scholar 

  98. Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, Chung KS, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Park MS (2016) Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102:89–95

    Article  PubMed  Google Scholar 

  99. Cameron SJ, Lewis KE, Beckmann M, Allison GG, Ghosal R, Lewis PD, Mur LA (2016) The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer 94:88–95

    Article  PubMed  Google Scholar 

  100. Cameron SJS, Lewis KE, Huws SA, Hegarty MJ, Lewis PD, Pachebat JA, Mur LAJ (2017) A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One 12:e0177062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

Sources of support: This work was supported by K23 AI102970 (L.N.S.), DOD grant, A Breath of Hope Lung Foundation. Conflict of interest: No conflicts of interest are reported by any authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo N. Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsay, JC.J., Murthy, V., Segal, L.N. (2019). The Microbiome Associated with Lung Cancer. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics