Skip to main content

Advertisement

Log in

De- “bug”-ing the microbiome in lung cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The identification of microbes enriched in the healthy lung has led to the compelling discovery that microbes may contribute to lung cancer pathogenesis. Here, we review the recent literature showing microbial associations with lung cancer as well as the functional features that have been identified in human and murine studies. Most biomarker data remain limited due to variable findings. However, multiple studies have found that lung tumors or ipsilateral airway samples have decreased α diversity compared to normal tissue. Specific genera, such as Veillonella and Streptococcus, were also found in association with lung tumors using multiple sampling methodologies. These microbes, which are generally found in the upper respiratory track, are associated with an IL-17 signature in the lung, potentially resulting in a pro-tumorigenic environment. Studies detailing these immune mechanisms are limited, and further investigation is necessary to delineate how these bacteria, their metabolites, and potentially tumor-associated neoantigens modulate the immune response in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lung and bronchus cancer — Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed 12 Jan 2022.

  2. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annual Review of Physiology, 78

  3. Rogers, G. B., Carroll, M. P., Serisier, D. J., et al. (2004). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 42. https://doi.org/10.1128/JCM.42.11.5176-5183.2004

  4. Rogers, G. B., Hart, C. A., Mason, J. R., et al. (2003). Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 41. https://doi.org/10.1128/JCM.41.8.3548-3558.2003

  5. Hilty, M., Burke, C., Pedro, H., et al. (2010). Disordered microbial communities in asthmatic airways. PLoS ONE, 5. https://doi.org/10.1371/journal.pone.0008578

  6. Zhang, Q., Cox, M., Liang, Z., et al. (2016). Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS ONE, 11. https://doi.org/10.1371/JOURNAL.PONE.0152724

  7. Loverdos K, Bellos G, Kokolatou L, et al (2019) Lung microbiome in asthma: Current perspectives. Journal of Clinical Medicine, 8

  8. Pragman, A. A., Kim, H. B., Reilly, C. S., et al. (2012). The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0047305

  9. Sears, C. L., & Garrett, W. S. (2014). Microbes, microbiota, and colon cancer. Cell Host & Microbe, 15, 317–328. https://doi.org/10.1016/J.CHOM.2014.02.007

    Article  CAS  Google Scholar 

  10. Reinhold, L., Möllering, A., Wallis, S., et al. (2020). Dissimilarity of airway and lung tissue microbiota in smokers undergoing surgery for lung cancer. Microorganisms, 8. https://doi.org/10.3390/microorganisms8060794

  11. Erb-Downward, J. R., Thompson, D. L., Han, M. K., et al. (2011). Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE, 6. https://doi.org/10.1371/JOURNAL.PONE.0016384

  12. Charlson, E. S., Bittinger, K., Haas, A. R., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. American Journal of Respiratory and Critical Care Medicine, 184, 957–963. https://doi.org/10.1164/RCCM.201104-0655OC

    Article  PubMed  PubMed Central  Google Scholar 

  13. Segal, L. N., Alekseyenko, A. v., Clemente, J. C., et al. (2013). Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. https://doi.org/10.1186/2049-2618-1-19

  14. Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., et al. (2017). Bacterial topography of the healthy human lower respiratory tract. mBio, 8. https://doi.org/10.1128/MBIO.02287-16/SUPPL_FILE/MBO001173194S1.DOC

  15. Morris, A., Beck, J. M., Schloss, P. D., et al. (2013). Comparison of the respiratory microbiome in healthy nonsmokers and smokers. American Journal of Respiratory and Critical Care Medicine, 187, 1067–1075. https://doi.org/10.1164/RCCM.201210-1913OC/SUPPL_FILE/DISCLOSURES.PDF

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., et al. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 6. https://doi.org/10.1128/MBIO.00037-15

  17. Budden, K. F., Gellatly, S. L., Wood, D. L. A., et al. (2016). Emerging pathogenic links between microbiota and the gut–lung axis. Nature Reviews Microbiology, 15, 55–63. https://doi.org/10.1038/nrmicro.2016.142

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30, 492–506. https://doi.org/10.1038/s41422-020-0332-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sommariva, M., le Noci, V., Bianchi, F., et al. (2020). The lung microbiota: Role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cellular and Molecular Life Sciences, 77, 2739. https://doi.org/10.1007/S00018-020-03452-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Segal LN, Clemente JC, Tsay JCJ, et al (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nature Microbiology, 1. imm

  21. Tsay, J. C. J., Wu, B. G., Sulaiman, I., et al. (2021). Lower airway dysbiosis affects lung cancer progression. Cancer Discovery, 11, 293–307. https://doi.org/10.1158/2159-8290.CD-20-0263

    Article  CAS  PubMed  Google Scholar 

  22. Dumont-Leblond, N., Veillette, M., Racine, C., et al. (2021). Non-small cell lung cancer microbiota characterization: Prevalence of enteric and potentially pathogenic bacteria in cancer tissues. PLoS ONE, 16, e0249832. https://doi.org/10.1371/JOURNAL.PONE.0249832

  23. Bingula, R., Filaire, E., Molnar, I., et al. (2020). Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: A cross-sectional clinical trial. Respiratory Research, 21. https://doi.org/10.1186/S12931-020-01392-2

  24. Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., et al. (2015). Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Annals of the American Thoracic Society, 12, 821–830. https://doi.org/10.1513/ANNALSATS.201501-029OC

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fox, G. E., Magrum, L. J., & Balch, W. E. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A, 74. https://doi.org/10.1073/pnas.74.10.4537

  26. Millares, L., Pérez-Brocal, V., Ferrari, R., et al. (2015). Functional metagenomics of the bronchial microbiome in COPD. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0144448

  27. Sulaiman, I., Wu, B. G., Li, Y., et al. (2021). Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. European Respiratory Journal, 58. https://doi.org/10.1183/13993003.03434-2020

  28. Aogáin, M., Lau, K. J. X., Cai, Z., et al. (2020). Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease. American Journal of Respiratory and Critical Care Medicine, 202https://doi.org/10.1164/rccm.201911-2202OC

  29. Lee, S. H., Sung, J. Y., Yong, D., et al. (2016). Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer, 102. https://doi.org/10.1016/j.lungcan.2016.10.016

  30. Zhuo, M., An, T., Zhang, C., & Wang, Z. (2020). Characterization of microbiota in cancerous lung and the contralateral non-cancerous lung within lung cancer patients. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.01584

  31. Cheng, C., Wang, Z., Wang, J., et al. (2020). Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Translational Lung Cancer Research, 9, 693–704. https://doi.org/10.21037/TLCR-19-590

  32. Jin, J., Gan, Y., Liu, H., et al. (2019). Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation. Lung Cancer, 136. https://doi.org/10.1016/j.lungcan.2019.08.022

  33. Liu, Y., O’Brien, J. L., Ajami, N. J., et al. (2018). Lung tissue microbial profile in lung cancer is distinct from emphysema. American Journal of Cancer Research, 8, 1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao, Q., Ma, W., Wang, Z., et al. (2020). Differential flora in the microenvironment of lung tumor and paired adjacent normal tissues. Carcinogenesis, 41, 1094–1103. https://doi.org/10.1093/CARCIN/BGAA044

    Article  CAS  PubMed  Google Scholar 

  35. Najafi, S., Abedini, F., Azimzadeh Jamalkandi, S., et al. (2021). The composition of lung microbiome in lung cancer: A systematic review and meta-analysis. BMC Microbiology, 21. https://doi.org/10.1186/S12866-021-02375-Z

  36. Poore, G. D., Kopylova, E., Zhu, Q., et al. (2020). Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 579, 567. https://doi.org/10.1038/S41586-020-2095-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nejman, D., Livyatan, I., Fuks, G., et al. (2020). The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 368, 973. https://doi.org/10.1126/SCIENCE.AAY9189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan, X., Yang, M., Liu, J., et al. (2015). Discovery and validation of potential bacterial biomarkers for lung cancer. American Journal of Cancer Research, 5, 3111.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, J., Mu, X., Wang, Y., et al. (2018). Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Frontiers in Oncology, 8, 520. https://doi.org/10.3389/FONC.2018.00520/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, W., Luo, J., Dong, X., et al. (2019). Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. Journal of Cancer, 10, 1651. https://doi.org/10.7150/JCA.28077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim, M. Y., Hong, S., Hwang, K. H., et al. (2021). Diagnostic and prognostic potential of the oral and gut microbiome for lung adenocarcinoma. Clinical and Translational Medicine, 11. https://doi.org/10.1002/CTM2.508

  42. Cameron, S. J. S., Lewis, K. E., Huws, S. A., et al. (2017). A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS ONE, 12. https://doi.org/10.1371/JOURNAL.PONE.0177062

  43. Zheng, X., Sun, X., Liu, Q., et al. (2020). The composition alteration of respiratory microbiota in lung cancer. 38:158–168.https://doi.org/10.1080/07357907.2020.1732405

  44. Zhang, W. Q., Zhao, S. K., Luo, J. W., et al. (2018). Alterations of fecal bacterial communities in patients with lung cancer. American Journal of Translational Research, 10, 3171.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fessler, J., Matson, V., & Gajewski, T. F. (2019). Exploring the emerging role of the microbiome in cancer immunotherapy. Journal for ImmunoTherapy of Cancer, 7, 108. https://doi.org/10.1186/S40425-019-0574-4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oster, P., Vaillant, L., Riva, E., et al. (2021). Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. https://doi.org/10.1136/GUTJNL-2020-323392

    Article  PubMed  Google Scholar 

  47. Hosgood, H. D., Cai, Q., Hua, X., et al. (2021). Variation in oral microbiome is associated with future risk of lung cancer among never-smokers. Thorax, 76, 256. https://doi.org/10.1136/THORAXJNL-2020-215542

    Article  PubMed  Google Scholar 

  48. Leng, Q., Holden, V. K., Deepak, J., et al. (2021). Microbiota biomarkers for lung cancer. Diagnostics, 11, 407. https://doi.org/10.3390/DIAGNOSTICS11030407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, Y., Fang, Z., Xue, Y., et al. (2020). Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 11, 1030–1042. https://doi.org/10.1080/19490976.2020.1737487

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lu, H., Gao, N. L., Tong, F., et al. (2021). Alterations of the human lung and gut microbiomes in non-small cell lung carcinomas and distant metastasis. Microbiology Spectrum, 9. https://doi.org/10.1128/spectrum.00802-21

  51. Yu, G., Gail, M. H., Consonni, D., et al. (2016). Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biology, 17. https://doi.org/10.1186/S13059-016-1021-1

  52. Greathouse, K. L., White, J. R., Vargas, A. J., et al. (2018). Interaction between the microbiome and TP53 in human lung cancer. Genome Biology, 19. https://doi.org/10.1186/S13059-018-1501-6

  53. Colman, G., Beighton, D., Chalk, A. J., & Wake, S. (1976). Cigarette smoking and the microbial flora of the mouth*. Australian Dental Journal, 21, 111–118. https://doi.org/10.1111/J.1834-7819.1976.TB02833.X

    Article  CAS  PubMed  Google Scholar 

  54. Ertel, A., Eng, R., & Smith, S. M. (1991). The differential effect of cigarette smoke on the growth of bacteria found in humans. Chest, 100, 628–630. https://doi.org/10.1378/CHEST.100.3.628

    Article  CAS  PubMed  Google Scholar 

  55. Wu, J., Peters, B. A., Dominianni, C., et al. (2016). Cigarette smoking and the oral microbiome in a large study of American adults. The ISME Journal, 10, 2435. https://doi.org/10.1038/ISMEJ.2016.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Einarsson, G. G., Comer, D. M., McIlreavey, L., et al. (2016). Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 71, 795–803. https://doi.org/10.1136/THORAXJNL-2015-207235

    Article  CAS  PubMed  Google Scholar 

  57. Peters, B. A., Hayes, R. B., Goparaju, C., et al. (2019). The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiology, Biomarkers & Prevention, 28, 731–740. https://doi.org/10.1158/1055-9965.EPI-18-0966

    Article  CAS  Google Scholar 

  58. Chang, Y. S., Hsu, M. H., Tu, S. J., et al. (2021). Metatranscriptomic analysis of human lung metagenomes from patients with lung cancer. Genes (Basel), 12. https://doi.org/10.3390/GENES12091458

  59. Patnaik, S. K., Cortes, E. G., Kannisto, E. D., et al. (2021). Lower airway bacterial microbiome may influence recurrence after resection of early-stage non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 161, 419-429.e16. https://doi.org/10.1016/J.JTCVS.2020.01.104

    Article  PubMed  Google Scholar 

  60. Tsay, J. C. J., Wu, B. G., Badri, M. H., et al. (2018). Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. American Journal of Respiratory and Critical Care Medicine, 198, 1188–1198. https://doi.org/10.1164/RCCM.201710-2118OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shacter, E., Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park), 16.

  62. Zhao, H., Wu, L., Yan, G., et al. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 6, 1–46. https://doi.org/10.1038/s41392-021-00658-5

    Article  CAS  Google Scholar 

  63. Gomes, M., Teixeira, A. L., Coelho, A., et al. (2014). The role of inflammation in lung cancer. Advances in Experimental Medicine and Biology, 816, 1–23. https://doi.org/10.1007/978-3-0348-0837-8_1

    Article  CAS  PubMed  Google Scholar 

  64. Ma, Q. Y., Huang, D. Y., Zhang, H. J., et al. (2017). Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5 + CD4 + T cells in non-small cell lung cancer. International Immunopharmacology, 52, 305–309. https://doi.org/10.1016/J.INTIMP.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  65. Kovaleva, O., Podlesnaya, P., Rashidova, M., et al. (2020). Lung microbiome differentially impacts survival of patients with non-small cell lung cancer depending on tumor stroma phenotype. Biomedicines, 8. https://doi.org/10.3390/BIOMEDICINES8090349

  66. Zheng, L., Xu, J., Sai, B., et al. (2020). Microbiome related cytotoxically active CD8+ TIL are inversely associated with lung cancer development. Frontiers in Oncology, 10, 2732. https://doi.org/10.3389/FONC.2020.531131/BIBTEX

    Article  Google Scholar 

  67. Ribot, J. C., Lopes, N., & Silva-Santos, B. (2021). γδ T cells in tissue physiology and surveillance. Nature Reviews Immunology, 21,

  68. Jin, C., Lagoudas, G. K., Zhao, C., et al. (2019). Commensal microbiota promote lung cancer development via γδ T cells. Cell, 176, 998. https://doi.org/10.1016/J.CELL.2018.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ji, Q., Perchellet, A., & Goverman, J. M. (2010). Viral infection triggers central nervous system autoimmunity via activation of dual TCR-expressing CD8+ T cells. Nature Immunology, 11, 628. https://doi.org/10.1038/NI.1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Balachandran, V. P., Łuksza, M., Zhao, J. N., et al. (2017). Identification of unique neoantigen qualities in long term pancreatic cancer survivors. Nature, 551, 512. https://doi.org/10.1038/NATURE24462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bradley, C. P., Teng, F., Felix, K. M., et al. (2017). Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host & Microbe, 22, 697-704.e4. https://doi.org/10.1016/J.CHOM.2017.10.007

    Article  CAS  Google Scholar 

  72. Fluckiger, A., Daillère, R., Sassi, M., et al. (1979). (2020) Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science, 369, 936–942. https://doi.org/10.1126/SCIENCE.AAX0701/SUPPL_FILE/AAX0701_FLUCKIGER_SM.PDF

    Article  Google Scholar 

  73. Fitzgerald, K. A., & Kagan, J. C. (2020). Toll-like receptors and the control of immunity. Cell, 180, 1044–1066. https://doi.org/10.1016/J.CELL.2020.02.041

    Article  CAS  PubMed  Google Scholar 

  74. Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397. https://doi.org/10.1038/41131

    Article  CAS  PubMed  Google Scholar 

  75. le Noci, V., Bernardo, G., Bianchi, F., et al. (2021). Toll like receptors as sensors of the tumor microbial dysbiosis: Implications in cancer progression. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/FCELL.2021.732192

  76. Zhang, Y. B., He, F. L., Fang, M., et al. (2009). Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Molecular Biology Reports, 36, 1475–1481. https://doi.org/10.1007/S11033-008-9338-9/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  77. Wang, K., Wang, J., Wei, F., et al. (2017). Expression of TLR4 in non-small cell lung cancer is associated with PD-L1 and poor prognosis in patients receiving pulmonectomy. Frontiers in Immunology, 8. https://doi.org/10.3389/FIMMU.2017.00456

  78. Hao, B., Chen, Z., Bi, B., et al. (2018). Role of TLR4 as a prognostic factor for survival in various cancers: a meta-analysis. Oncotarget, 9, 13088. https://doi.org/10.18632/ONCOTARGET.24178

  79. Chatterjee, S., Crozet, L., Damotte, D., et al. (2014). TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non–small cell lung cancer. Cancer Research, 74, 5008–5018. https://doi.org/10.1158/0008-5472.CAN-13-2698

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, H., Chen, J. H., Hu, J., et al. (2014). High expression of Toll-like receptor 5 correlates with better prognosis in non-small-cell lung cancer: An anti-tumor effect of TLR5 signaling in non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 140, 633–643. https://doi.org/10.1007/S00432-014-1616-4/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  81. Bianchi, F., Milione, M., Casalini, P., et al. (2019). Toll-like receptor 3 as a new marker to detect high risk early stage non-small-cell lung cancer patients. Science and Reports, 9. https://doi.org/10.1038/S41598-019-50756-2

  82. Mirzaei, R., Afaghi, A., Babakhani, S., et al. (2021). Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomedicine & Pharmacotherapy, 139, 111619. https://doi.org/10.1016/J.BIOPHA.2021.111619

    Article  CAS  Google Scholar 

  83. Yang, J. J., Yu, D., Xiang, Y. B., et al. (2020). Association of dietary fiber and yogurt consumption with lung cancer risk: A pooled analysis. JAMA Oncology, 6. https://doi.org/10.1001/JAMAONCOL.2019.4107

  84. Rifkin, S. B., Giardiello, F. M., Zhu, X., et al. (2020). Yogurt consumption and colorectal polyps. British Journal of Nutrition, 124, 80. https://doi.org/10.1017/S0007114520000550

    Article  CAS  PubMed  Google Scholar 

  85. Koh, A., de Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165, 1332–1345. https://doi.org/10.1016/J.CELL.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  86. Gui, Q., Li, H., Wang, A., et al. (2020). The association between gut butyrate-producing bacteria and non-small-cell lung cancer. Journal of Clinical Laboratory Analysis, 34. https://doi.org/10.1002/JCLA.23318

  87. Botticelli, A., Vernocchi, P., Marini, F., et al. (2020). Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. Journal of Translational Medicine, 18, 1–10. https://doi.org/10.1186/S12967-020-02231-0/FIGURES/2

    Article  Google Scholar 

  88. Zhao, F., An, R., Wang, L., et al. (2021). Specific gut microbiome and serum metabolome changes in lung cancer patients. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.725284

  89. Chen, L., Zhou, X., Wang, Y., et al. (2021). Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice. Molecular Nutrition and Food Research, 65. https://doi.org/10.1002/mnfr.202100096

  90. Xiao, X., Cao, Y., & Chen, H. (2018). Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. Journal of Cellular Biochemistry, 119, 3563–3573. https://doi.org/10.1002/JCB.26547

    Article  CAS  PubMed  Google Scholar 

  91. Kim, K., Kwon, O., Ryu, T. Y., et al. (2019). Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Molecular Medicine Reports, 20, 1569–1574. https://doi.org/10.3892/MMR.2019.10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, M., Jiang, W., Xiao, C., et al. (2020). Sodium butyrate combined with docetaxel for the treatment of lung adenocarcinoma A549 cells by targeting Gli1. Oncotargets and Therapy, 13, 8861–8875. https://doi.org/10.2147/OTT.S252323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Trompette, A., Gollwitzer, E. S., Yadava, K., et al. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20, 159–166. https://doi.org/10.1038/nm.3444

    Article  CAS  PubMed  Google Scholar 

  94. Thorburn, A. N., McKenzie, C. I., Shen, S., et al. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 6, 1–13. https://doi.org/10.1038/ncomms8320

    Article  CAS  Google Scholar 

  95. Haak, B. W., Littmann, E. R., Chaubard, J. L., et al. (2018). Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood, 131, 2978–2986. https://doi.org/10.1182/BLOOD-2018-01-828996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walter, J., Armet, A. M., Finlay, B. B., & Shanahan, F. (2020). Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents. Cell, 180, 221–232. https://doi.org/10.1016/J.CELL.2019.12.025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript and approved the final version of this manuscript.

Corresponding author

Correspondence to Fyza Y. Shaikh.

Ethics declarations

Conflict of interest

FYS received funding through a grant to Johns Hopkins University School of Medicine from Bristol-Myers Squibb, outside of this work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birla, P., Shaikh, F.Y. De- “bug”-ing the microbiome in lung cancer. Cancer Metastasis Rev 41, 335–346 (2022). https://doi.org/10.1007/s10555-022-10036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10036-4

Keywords

Navigation