Skip to main content

Advertisement

Log in

Non-coding RNAs as potential biomarkers of gallbladder cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gallbladder cancer (GBC) performs strongly invasive and poor prognosis, and adenocarcinoma is the most common histological type in it. Statistically, the 5-year survival rate of patients with advanced GBC is less than 5%. Such dismal outcome might be caused by chemotherapy resistance and native biology of tumor cells, regardless of emerging therapeutic strategies. Early diagnosis, depending on biomarkers, receptors and secretive proteins, is more important than clinical therapy, guiding the pathologic stage of cancer and the choice of medication. Therefore, it is in urgent need to understand the specific pathogenesis of GBC and strive to find promising novel biomarkers for early screening in GBC. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs, miRs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are confirmed to participate in and regulate the occurrence and development of GBC. Exceptionally, lncRNAs and circRNAs could act as competing endogenous RNAs (ceRNAs) containing binding sites for miRNAs and crosstalk with miRNAs to target regulatory downstream protein-coding messenger RNAs (mRNAs), thus affecting the expression levels of specific proteins to participate in and regulate the development and progression of GBC. It follows that ncRNAs may become promising biomarkers and potential therapeutic targets for GBC. In this review, we mainly summarize the recent research progress of miRNAs and lncRNAs in regulating the development and progression of GBC, chemoresistance, and predicting the prognosis of patients, and highlight the potential applications of the lncRNA/circRNA–miRNA–mRNA cross-regulatory networks in early diagnosis, chemoresistance, and prognostic evaluation, aiming to better understand the pathogenesis of GBC and develop new diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Gamboa AC, Maithel SK. The landmark series: gallbladder cancer. Ann Surg Oncol. 2020;27(8):2846–58.

    Article  PubMed  Google Scholar 

  2. Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer. 2004;4(9):695–706.

    Article  CAS  PubMed  Google Scholar 

  3. Cherkassky L, D’Angelica M. Gallbladder cancer: managing the incidental diagnosis. Surg Oncol Clin N Am. 2019;28(4):619–30.

    Article  PubMed  Google Scholar 

  4. Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder cancer: An update. Mutat Res. 2019;816: 111674.

    Article  PubMed  Google Scholar 

  5. Dutta U. Gallbladder cancer: can newer insights improve the outcome? J Gastroenterol Hepatol. 2012;27(4):642–53.

    Article  PubMed  Google Scholar 

  6. Goetze TO. Gallbladder carcinoma: Prognostic factors and therapeutic options. World J Gastroenterol. 2015;21(43):12211–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Konstantinidis IT, Deshpande V, Genevay M, Berger D, Fernandez-del Castillo C, Tanabe KK, et al. Trends in presentation and survival for gallbladder cancer during a period of more than 4 decades: a single-institution experience. Arch Surg. 2009;144(5):441–7.

    Article  PubMed  Google Scholar 

  8. Coburn NG, Cleary SP, Tan JC, Law CH. Surgery for gallbladder cancer: a population-based analysis. J Am Coll Surg. 2008;207(3):371–82.

    Article  PubMed  Google Scholar 

  9. Rakić M, Patrlj L, Kopljar M, Kliček R, Kolovrat M, Loncar B, et al. Gallbladder cancer. Hepatobiliary Surg Nutr. 2014;3(5):221–6.

    PubMed  PubMed Central  Google Scholar 

  10. Gong K, Gong ZJ, Lu PX, Ni XL, Shen S, Liu H, et al. PLAC8 overexpression correlates with PD-L1 upregulation and acquired resistance to chemotherapies in gallbladder carcinoma. Biochem Biophys Res Commun. 2019;516(3):983–90.

    Article  CAS  PubMed  Google Scholar 

  11. Caldow Pilgrim CH, Groeschl RT, Quebbeman EJ, Gamblin TC. Recent advances in systemic therapies and radiotherapy for gallbladder cancer. Surg Oncol. 2013;22(1):61–7.

    Article  PubMed  Google Scholar 

  12. Azizi AA, Lamarca A, McNamara MG, Valle JW. Chemotherapy for advanced gallbladder cancer (GBC): A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;163: 103328.

    Article  PubMed  Google Scholar 

  13. Sachan A, Saluja SS, Nekarakanti PK, Nimisha MB, Nag HH, et al. Raised CA19–9 and CEA have prognostic relevance in gallbladder carcinoma. BMC Cancer. 2020;20(1):826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen Z, Si A, Yang J, Yang P, Yang X, Liu H, et al. Elevation of CA19-9 and CEA is associated with a poor prognosis in patients with resectable gallbladder carcinoma. HPB (Oxford). 2017;19(11):951–6.

    Article  PubMed  Google Scholar 

  15. Yamashita S, Passot G, Aloia TA, Chun YS, Javle M, Lee JE, et al. Prognostic value of carbohydrate antigen 19–9 in patients undergoing resection of biliary tract cancer. Br J Surg. 2017;104(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  16. Hatzaras I, Schmidt C, Muscarella P, Melvin WS, Ellison EC, Bloomston M. Elevated CA 19–9 portends poor prognosis in patients undergoing resection of biliary malignancies. HPB (Oxford). 2010;12(2):134–8.

    Article  PubMed  Google Scholar 

  17. Richard BC. Non-coding RNA: It’s Not Junk. Dig Dis Sci. 2017;62(5):1107–9.

    Article  Google Scholar 

  18. Xue XY, Liu YX, Wang C, Gu XJ, Xue ZQ, Zang XL, et al. Identification of exosomal miRNAs as diagnostic biomarkers for cholangiocarcinoma and gallbladder carcinoma. Signal Transduct Target Ther. 2020;5(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  20. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179(5):1033–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2): e202009045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer. BMB Rep. 2012;45(11):604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lieberman J, Slack F, Pandolfi PP, Chinnaiyan A, Agami R, Mendell JT. Noncoding RNAs and cancer. Cell. 2013;153(1):9–10.

    Article  PubMed  Google Scholar 

  28. Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform. 2017;18(5):780–8.

    CAS  PubMed  Google Scholar 

  29. Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13(4):669–80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett. 2018;15(3):2735–42.

    PubMed  Google Scholar 

  31. Berindan-Neagoe I, MonroigPdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64(5):311–36.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tong L, Cheng J, Zuo H, Li J. MicroRNA-197 promotes proliferation and inhibits apoptosis of gallbladder cancer cells by targeting insulin-like growth factor-binding protein 3. Adv Clin Exp Med. 2021;30(7):661–72.

    Article  PubMed  Google Scholar 

  33. Hu X, Zhang J, Bu J, Yang K, Xu S, Pan M, et al. MiR-4733-5p promotes gallbladder carcinoma progression via directly targeting kruppel like factor 7. Bioengineered. 2022;13(4):10691–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kono H, Nakamura M, Ohtsuka T, Nagayoshi Y, Mori Y, Takahata S, et al. High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma. Oncol Rep. 2013;30(1):17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.

    Article  CAS  PubMed  Google Scholar 

  36. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J, et al. MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol. 2013;59(3):518–27.

    Article  CAS  PubMed  Google Scholar 

  38. Song F, Yang Z, Li L, Wei Y, Tang X, Liu S, et al. MiR-552-3p promotes malignant progression of gallbladder carcinoma by reactivating the Akt/β-catenin signaling pathway due to inhibition of the tumor suppressor gene RGMA. Ann Transl Med. 2021;9(17):1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Hu Z, Wen C, Liao Q, He B, Peng J, et al. MicroRNA-182 promotes epithelial-mesenchymal transition by targeting FOXN3 in gallbladder cancer. Oncol Lett. 2021;21(3):200.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li J, Zhu S, Tong J, Hao H, Yang J, Liu Z, et al. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. NeuroReport. 2016;27(2):110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5): e1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, et al. Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 2015;75(16):3355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He Y, Chen X, Yu Y, Li J, Hu Q, Xue C, et al. LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol Carcinog. 2018;57(6):772–83.

    Article  CAS  PubMed  Google Scholar 

  44. Hua CB, Song SB, Ma HL, Li XZ. MiR-1-5p is down-regulated in gallbladder carcinoma and suppresses cell proliferation, migration and invasion by targeting Notch2. Pathol Res Pract. 2019;215(1):200–8.

    Article  CAS  PubMed  Google Scholar 

  45. Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF, et al. miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis. 2018;9(2):182.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li XL, Li SZ, Wu CX, Xing XH. miR-188-5p inhibits proliferation, migration, and invasion in gallbladder carcinoma by targeting Wnt2b and Smad2. Kaohsiung J Med Sci. 2021;37(4):294–304.

    Article  CAS  PubMed  Google Scholar 

  47. Ma F, Zhang M, Gong W, Weng M, Quan Z. MiR-138 suppresses cell proliferation by targeting bag-1 in gallbladder Carcinoma. PLoS ONE. 2015;10(5): e0126499.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shu YJ, Bao RF, Jiang L, Wang Z, Wang XA, Zhang F, et al. MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 2017;24(3):445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Zhang L, Chen M, Liu D. miR-324-5p inhibits gallbladder carcinoma cell metastatic behaviours by downregulation of transforming growth factor beta 2 expression. Artif Cells Nanomed Biotechnol. 2020;48(1):315–24.

    Article  CAS  PubMed  Google Scholar 

  50. Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle. 2022;21(11):1166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  52. Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, et al. MiR-145: a potential biomarker of cancer migration and invasion. Am J Transl Res. 2019;11(11):6739–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan Y, Yang Z, Zou Q. MiRNA-145 induces apoptosis in a gallbladder carcinoma cell line by targeting DFF45. Open Life Sci. 2018;13:227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao W, Gong Y, Chen Y. MRNA profiling involved in triggering of STAT1 with regulatory involvement of IRF7, PTPRF, and miR-145p in patients suffering from gall bladder Carcinoma. J Healthc Eng. 2022;2022:1770643.

    PubMed  PubMed Central  Google Scholar 

  55. Goeppert B, Truckenmueller F, Ori A, Fritz V, Albrecht T, Fraas A, et al. Profiling of gallbladder carcinoma reveals distinct miRNA profiles and activation of STAT1 by the tumor suppressive miRNA-145-5p. Sci Rep. 2019;9(1):4796.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cai J, Xu L, Cai Z, Wang J, Zhou B, Hu H. MicroRNA-146b-5p inhibits the growth of gallbladder carcinoma by targeting epidermal growth factor receptor. Mol Med Rep. 2015;12(1):1549–55.

    Article  CAS  PubMed  Google Scholar 

  57. Ouyang B, Pan N, Zhang H, Xing C, Ji W. miR-146b-5p inhibits tumorigenesis and metastasis of gallbladder cancer by targeting Toll-like receptor 4 via the nuclear factor-κB pathway. Oncol Rep. 2021;45(4):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bao RF, Shu YJ, Hu YP, Wang XA, Zhang F, Liang HB, et al. miR-101 targeting ZFX suppresses tumor proliferation and metastasis by regulating the MAPK/Erk and Smad pathways in gallbladder carcinoma. Oncotarget. 2016;7(16):22339–54.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lu W, Zhang Y, Zhou L, Wang X, Mu J, Jiang L, et al. miR-122 inhibits cancer cell malignancy by targeting PKM2 in gallbladder carcinoma. Tumour Biol. 2015. https://doi.org/10.1007/s13277-015-4308-z.

    Article  PubMed  Google Scholar 

  60. Wang N, Xiang X, Chen K, Liu P, Zhu A. Targeting of NT5E by miR-30b and miR-340 attenuates proliferation, invasion and migration of gallbladder carcinoma. Biochimie. 2018;146:56–67.

    Article  PubMed  Google Scholar 

  61. Lu K, Feng F, Yang Y, Liu K, Duan J, Liu H, et al. High-throughput screening identified miR-7-2-3p and miR-29c-3p as metastasis suppressors in gallbladder carcinoma. J Gastroenterol. 2020;55(1):51–66.

    Article  PubMed  Google Scholar 

  62. Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48(3):381–95.

    Article  CAS  PubMed  Google Scholar 

  63. Jordan VC. A retrospective: on clinical studies with 5-Fluorouracil. Cancer Res. 2016;76(4):767–8.

    Article  CAS  PubMed  Google Scholar 

  64. Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother. 2021;137: 111285.

    Article  CAS  PubMed  Google Scholar 

  65. Wang W, Chen LC, Qian JY, Zhang Q. MiR-335 promotes cell proliferation by inhibiting MEF2D and sensitizes cells to 5-Fu treatment in gallbladder carcinoma. Eur Rev Med Pharmacol Sci. 2019;23(22):9829–39.

    CAS  PubMed  Google Scholar 

  66. Gong YQ, Ni JL, Fang Q, Li T. MiR-1231 enhances docetaxel sensitivity to gallbladder carcinoma cells by downregulating FOXC2. Eur Rev Med Pharmacol Sci. 2020;24(23):12116–23.

    PubMed  Google Scholar 

  67. Lazcano-Ponce EC, Miquel JF, Muñoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51(6):349–64.

    Article  CAS  PubMed  Google Scholar 

  68. Kim BH, Kwon J, Chie EK, Kim K, Kim YH, Seo DW, et al. Adjuvant chemoradiotherapy is associated with improved survival for patients with resected Gallbladder Carcinoma: a systematic review and meta-analysis. Ann Surg Oncol. 2018;25(1):255–64.

    Article  PubMed  Google Scholar 

  69. Butte JM, Matsuo K, Gönen M, D’Angelica MI, Waugh E, Allen PJ, et al. Gallbladder cancer: differences in presentation, surgical treatment, and survival in patients treated at centers in three countries. J Am Coll Surg. 2011;212(1):50–61.

    Article  PubMed  Google Scholar 

  70. Neyaz A, Husain N, Gupta S, Kumari S, Arora A, Awasthi NP, et al. Investigation of targetable predictive and prognostic markers in gallbladder carcinoma. J Gastrointest Oncol. 2018;9(1):111–25.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jiang ZB, Ma BQ, Feng Z, Liu SG, Gao P, Yan HT. miR-365 inhibits the progression of gallbladder carcinoma and predicts the prognosis of Gallbladder carcinoma patients. Cell Cycle. 2021;20(3):308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen J, Yu Y, Chen X, He Y, Hu Q, Li H, et al. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 2018;51(6): e12510.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jin K, Xiang Y, Tang J, Wu G, Li J, Xiao H, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol. 2014;35(2):1503–10.

    Article  CAS  PubMed  Google Scholar 

  74. Peng HH, Zhang YD, Gong LS, Liu WD, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. Onco Targets Ther. 2013;6:1625–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang B, Cui H, Sun Y, Wang X, Jia Q, Li J, et al. Up-regulation of miR-204 inhibits proliferation, invasion and apoptosis of gallbladder cancer cells by targeting Notch2. Aging (Albany NY). 2021;13(2):2941–58.

    Article  CAS  PubMed  Google Scholar 

  76. Lv YP, Shi W, Liu HX, Kong XJ, Dai DL. Identification of miR-146b-5p in tissues as a novel biomarker for prognosis of gallbladder carcinoma. Eur Rev Med Pharmacol Sci. 2017;21(3):518–22.

    PubMed  Google Scholar 

  77. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  78. Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.

    Article  CAS  PubMed  Google Scholar 

  79. Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016;29(4):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang J, Liu H, Shen X, Wang Y, Zhang D, Shen S, et al. Long non-coding RNA expression profiles in gallbladder carcinoma identified using microarray analysis. Oncol Lett. 2017;13(5):3508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai Q, Jin L, Wang S, Zhou D, Wang J, Tang Z, et al. Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget. 2017;8(29):47957–68.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15(6):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, et al. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol. 2016;64(6):1283–94.

    Article  CAS  PubMed  Google Scholar 

  84. Liang C, Yang P, Han T, Wang RY, Xing XL, Si AF, et al. Long non-coding RNA DILC promotes the progression of gallbladder carcinoma. Gene. 2019;694:102–10.

    Article  CAS  PubMed  Google Scholar 

  85. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.

    Article  PubMed  Google Scholar 

  86. Gundamaraju R, Lu W, Paul MK, Jha NK, Gupta PK, Ojha S, et al. Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis. 2022;1868(9): 166431.

    Article  CAS  PubMed  Google Scholar 

  87. Wang SH, Wu XC, Zhang MD, Weng MZ, Zhou D, Quan ZW. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition. Am J Cancer Res. 2015;6(1):15–26.

    PubMed  PubMed Central  Google Scholar 

  88. Zhang P, Cao P, Zhu X, Pan M, Zhong K, He R, et al. Upregulation of long non-coding RNA HOXA-AS2 promotes proliferation and induces epithelial-mesenchymal transition in gallbladder carcinoma. Oncotarget. 2017;8(20):33137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yang L, Cheng X, Ge N, Guo W, Feng F, Wan F. Long non-coding RNA SPRY4-IT1 promotes gallbladder carcinoma progression. Oncotarget. 2017;8(2):3104–10.

    Article  PubMed  Google Scholar 

  90. Liu B, Shen ED, Liao MM, Hu YB, Wu K, Yang P, et al. Expression and mechanisms of long non-coding RNA genes MEG3 and ANRIL in gallbladder cancer. Tumour Biol. 2016;37(7):9875–86.

    Article  CAS  PubMed  Google Scholar 

  91. Niu JZ, Liang XC, Xu ZW, Li ZH, Li J, Meng Y, et al. Long non-coding RNA Linc00261 as a novel potential diagnostic and prognostic biomarker for gallbladder cancer. Transl Cancer Res. 2020;9(10):6078–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xue Z, Yang B, Xu Q, Zhu X, Qin G. Long non-coding RNA SSTR5-AS1 facilitates gemcitabine resistance via stabilizing NONO in gallbladder carcinoma. Biochem Biophys Res Commun. 2020;522(4):952–9.

    Article  CAS  PubMed  Google Scholar 

  93. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfil PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khandelwal A, Malhotra A, Jain M, Vasquez KM, Jain A. The emerging role of long non-coding RNA in gallbladder cancer pathogenesis. Biochimie. 2017;132:152–60.

    Article  CAS  PubMed  Google Scholar 

  95. Li J, Zhang H, Luo H. Long non-coding RNA OIP5-AS1 contributes to gallbladder cancer cell invasion and migration by miR-143-3p suppression. Cancer Manag Res. 2020;12:12983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin Z, Li Y, Shao R, Hu Y, Gao H. LncRNA TTN-AS1 acts as a tumor promoter in gallbladder carcinoma by regulating miR-107/HMGA1 axis. World J Surg Oncol. 2021;19(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Su L, Zhang J, Zhang X, Zheng L, Zhu Z. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol. 2021;38(12):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sui Z, Sui X. Long non-coding RNA TMPO-AS1 promotes cell proliferation, migration, invasion and epithelial-to-mesenchymal transition in gallbladder carcinoma by regulating the microRNA-1179/E2F2 axis. Oncol Lett. 2021;22(6):855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu X, Shi C, Hou C. AFAP1-AS1/Hsa-miR-15a-5p/Bcl-2 axis is a potential regulator of cancer cell proliferation and apoptosis in gallbladder carcinoma. Nutr Cancer. 2022;26:1–12.

    Google Scholar 

  100. Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO. PVT1 signaling is a mediator of cancer progression. Front Oncol. 2019;9:502.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jin L, Cai Q, Wang S, Wang S, Wang J, Quan Z. Long noncoding RNA PVT1 promoted gallbladder cancer proliferation by epigenetically suppressing miR-18b-5p via DNA methylation. Cell Death Dis. 2020;11(10):871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu K, Xu Q. LncRNA PVT1 regulates gallbladder cancer progression through miR-30d-5p. J Biol Regul Homeost Agents. 2020;34(3):875–83.

    CAS  PubMed  Google Scholar 

  104. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cai Q, Wang Z, Wang S, Weng M, Zhou D, Li C, et al. Long non-coding RNA LINC00152 promotes gallbladder cancer metastasis and epithelial-mesenchymal transition by regulating HIF-1α via miR-138. Open Biol. 2017;7(1): 160247.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li Y, Chen P, Zu L, Liu B, Wang M, Zhou Q. MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res. 2016;6(2):127–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu L, Yan Y, Zhang G, Chen C, Shen W, Xing P. Knockdown of LINC01694 inhibits growth of gallbladder cancer cells via miR-340-5p/Sox4. Biosci Rep. 2020;40(4):BSR20194444.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 2020;123: 109774.

    Article  CAS  PubMed  Google Scholar 

  109. Wang SH, Ma F, Tang ZH, Wu XC, Cai Q, Zhang MD, et al. Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder cancer. J Exp Clin Cancer Res. 2016;35(1):160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang SH, Wu XC, Zhang MD, Weng MZ, Zhou D, Quan ZW. Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2. Tumour Biol. 2016;37(7):9721–30.

    Article  CAS  PubMed  Google Scholar 

  111. Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 2011;21(11):1944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(2): 188502.

    Article  CAS  PubMed  Google Scholar 

  113. Wang SH, Zhang WJ, Wu XC, Weng MZ, Zhang MD, Cai Q, et al. The lncRNA MALAT1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J Cell Mol Med. 2016;20(12):2299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang SH, Zhang WJ, Wu XC, Zhang MD, Weng MZ, Zhou D, et al. Long non-coding RNA Malat1 promotes gallbladder cancer development by acting as a molecular sponge to regulate miR-206. Oncotarget. 2016;7(25):37857–67.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liu S, Chu B, Cai C, Wu X, Yao W, Wu Z, et al. DGCR5 Promotes gallbladder cancer by sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK pathways. J Cancer. 2020;11(18):5466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hu YP, Jin YP, Wu XS, Yang Y, Li YS, Li HF, et al. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer. 2019;18(1):167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma MZ, Chu BF, Zhang Y, Weng MZ, Qin YY, Gong W, et al. Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis. 2015;6(1): e1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang F, Tang Z, Duan A, Yi B, Shen N, Bo Z, et al. Long Noncoding RNA NEAT1 upregulates survivin and facilitates gallbladder cancer progression by sponging microRNA-335. Onco Targets Ther. 2020;13:2357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang T, Chen L, Xu X, Shen C. Knockdown of long noncoding RNA urothelial carcinoma-associated 1 represses gallbladder cancer advancement by regulating SPOCK1 expression through sponging miR-613. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2020.4290.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wu XS, Wang F, Li HF, Hu YP, Jiang L, Zhang F, et al. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep. 2017;18(10):1837–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu XF, Wang K, Du HC. LncRNA SNHG6 regulating Hedgehog signaling pathway and affecting the biological function of gallbladder carcinoma cells through targeting miR-26b-5p. Eur Rev Med Pharmacol Sci. 2020;24(14):7598–611.

    PubMed  Google Scholar 

  122. Ma F, Wang SH, Cai Q, Jin LY, Zhou D, Ding J, et al. Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma. Biomed Pharmacother. 2017;88:863–9.

    Article  CAS  PubMed  Google Scholar 

  123. Ma MZ, Li CX, Zhang Y, Weng MZ, Zhang MD, Qin YY, et al. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol Cancer. 2014;13:156.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang S, Wang Y, Wang S, Tong H, Tang Z, Wang J, et al. Long non-coding RNA FIRRE acts as a miR-520a-3p sponge to promote gallbladder cancer progression via Mediating YOD1 expression. Front Genet. 2021;12: 674653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma MZ, Zhang Y, Weng MZ, Wang SH, Hu Y, Hou ZY, et al. Long noncoding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase-dependent cell proliferation in gallbladder cancer. Cancer Res. 2016;76(18):5361–71.

    Article  CAS  PubMed  Google Scholar 

  126. Li K, Tang J, Hou Y. LncRNA GATA6-AS inhibits cancer cell migration and invasion in gallbladder cancer by downregulating miR-421. Onco Targets Ther. 2019;12:8047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu S, Zhan M, Jiang C, He M, Yang L, Shen H, et al. Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun. 2019;10(1):5492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li Y, Tian M, Zhang D, Zhuang Y, Li Z, Xie S, et al. Long Non-coding RNA myosin light chain kinase antisense 1 plays an oncogenic role in gallbladder carcinoma by promoting chemoresistance and proliferation. Cancer Manag Res. 2021;13:6219–30.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J, et al. Circular RNAs: clinical relevance in cancer. Oncotarget. 2017;9(1):1444–60.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16): e100836.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, et al. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol. 2020;145: 102854.

    Article  PubMed  Google Scholar 

  132. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.

    CAS  PubMed  Google Scholar 

  133. Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, et al. Circular RNAs in cancer: an emerging key player. J Hematol Oncol. 2017;10(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun. 2018;503(2):863–9.

    Article  CAS  PubMed  Google Scholar 

  135. Wang P, Zhou C, Li D, Zhang D, Wei L, Deng Y. circMTO1 sponges microRNA-219a-5p to enhance gallbladder cancer progression via the TGF-β/Smad and EGFR pathways. Oncol Lett. 2021;22(1):563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang X, Lin YK, Lu ZL, Li J. Circular RNA circ-MTO1 serves as a novel potential diagnostic and prognostic biomarker for gallbladder cancer. Eur Rev Med Pharmacol Sci. 2020;24(16):8359–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Declared none.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YL wrote and revised the manuscript, and reviewed the literature and approved the version to be published. WY and ZZ participated in the revision and polishing of the manuscript.

Corresponding author

Correspondence to Yan Lv.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yin, W. & Zhang, Z. Non-coding RNAs as potential biomarkers of gallbladder cancer. Clin Transl Oncol 25, 1489–1511 (2023). https://doi.org/10.1007/s12094-022-03056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03056-7

Keywords

Navigation