Skip to main content

Advertisement

Log in

Potentials of long non-coding RNAs as biomarkers of colorectal cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA–miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Kang L, Chen YG, Zhang H, et al. Transanal total mesorectal excision for rectal cancer: a multicentric cohort study. Gastroenterol Rep (Oxf). 2019;8(1):36–41.

    Article  Google Scholar 

  2. Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.

    Article  PubMed  CAS  Google Scholar 

  3. Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer. 2019;109:70–83.

    Article  CAS  PubMed  Google Scholar 

  4. Loree JM, Kopetz S. Recent developments in the treatment of metastatic colorectal cancer. Ther Adv Med Oncol. 2017;9(8):551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee GC, Bordeianou LG, Francone TD, et al. Superior pathologic and clinical outcomes after minimally invasive rectal cancer resection, compared to open resection. Surg Endosc. 2020;34(8):3435–48.

    Article  PubMed  Google Scholar 

  6. Li CC, Liang JA, Chen WT, Chien CR. Effectiveness of image-guided radiotherapy for rectal cancer patients treated with neoadjuvant concurrent chemoradiotherapy: a population-based propensity score-matched analysis. Asia Pac J Clin Oncol. 2019;15(5):e197–203.

    Article  PubMed  Google Scholar 

  7. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Compton C, Fenoglio-Preiser CM, Pettigrew N, Fielding LP. American joint committee on cancer prognostic factors consensus conference: colorectal working group. Cancer. 2000;88(7):1739–57.

    Article  CAS  PubMed  Google Scholar 

  9. Duffy MJ, van Dalen A, Haglund C, et al. Tumour markers in colorectal cancer: European group on tumour markers (EGTM) guidelines for clinical use. Eur J Cancer. 2007;43(9):1348–60.

    Article  CAS  PubMed  Google Scholar 

  10. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.

    Article  CAS  PubMed  Google Scholar 

  11. Primrose JN, Perera R, Gray A, et al. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA. 2014;311(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Zhou J. LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab Brain Dis. 2017;32(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  14. Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting non-coding RNA in vascular biology and disease. Front Physiol. 2018;9:1655.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer. BMB Rep. 2012;5(11):604–11.

    Article  CAS  Google Scholar 

  19. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300–7.

    Article  CAS  PubMed  Google Scholar 

  21. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Tang L. The application of lncRNAs in cancer treatment and diagnosis. Recent Pat Anticancer Drug Discov. 2018;13(3):292–301.

    Article  CAS  PubMed  Google Scholar 

  24. Wu P, Mo Y, Peng M, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19(1):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghafouri-Fard S, Hussen BM, Gharebaghi A, Eghtedarian R, Taheri M. LncRNA signature in colorectal cancer. Pathol Res Pract. 2021;222: 153432.

    Article  CAS  PubMed  Google Scholar 

  26. Bykov VJ, Zhang Q, Zhang M, Ceder S, Abrahmsen L, Wiman KG. Targeting of mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol. 2016;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 2001;29(Pt 6):684–8.

    Article  CAS  PubMed  Google Scholar 

  28. Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei LJ, Bai DM, Wang ZY, Liu BC. Up-regulated lncRNA CACNA1G-AS1 aggravates the progression of colorectal cancer by downregulating p53. Eur Rev Med Pharmacol Sci. 2020;24(1):130–6.

    PubMed  Google Scholar 

  30. Xue W, Wang F, Han P, et al. The oncogenic role of LncRNA FAM83C-AS1 in colorectal cancer development by epigenetically inhibits SEMA3F via stabilizing EZH2. Aging (Albany NY). 2020;12(20):20396–412.

    Article  CAS  Google Scholar 

  31. Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005;24(42):6406–17.

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Wen S. Silencing of lncRNA LINC00346 inhibits the proliferation and promotes the apoptosis of colorectal cancer cells through inhibiting JAK1/STAT3 signaling. Cancer Manag Res. 2020;12:4605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue J, Liao L, Yin F, Kuang H, Zhou X, Wang Y. LncRNA AB073614 induces epithelial- mesenchymal transition of colorectal cancer cells via regulating the JAK/STAT3 pathway. Cancer Biomark. 2018;21(4):849–58.

    Article  CAS  PubMed  Google Scholar 

  34. Duan Q, Cai L, Zheng K, et al. lncRNA KCNQ1OT1 knockdown inhibits colorectal cancer cell proliferation, migration and invasiveness via the PI3K/AKT pathway. Oncol Lett. 2020;20(1):601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen C, Wei M, Wang C, et al. Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2. Aging (Albany NY). 2020;12(12):11685–97.

    Article  CAS  Google Scholar 

  36. Liu J, Qian J, Mo Q, Tang L, Xu Q. LncRNA NR2F2-AS1 silencing induces cell cycle arrest in G0/G1 phase via downregulating cyclin D1 in colorectal cancer. Cancer Manag Res. 2020;12:1835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meng N, Chen M, Chen D, et al. Small protein hidden in lncRNA LOC90024 promotes “cancerous” RNA splicing and tumorigenesis. Adv Sci (Weinh). 2020;7(10):1903233.

    Article  CAS  Google Scholar 

  38. Tang GH, Chen X, Ding JC, et al. LncRNA LUCRC regulates colorectal cancer cell growth and tumorigenesis by targeting endoplasmic reticulum stress response. Front Genet. 2020;10:1409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang X, Tao H, Wang C, Chen W, Hua F, Qian H. lncRNA-ATB promotes stemness maintenance in colorectal cancer by regulating transcriptional activity of the β-catenin pathway. Exp Ther Med. 2020;19(4):3097–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang X, Wu S, Li X, Yin Y, Chen R. MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter. J Clin Lab Anal. 2020;34(10): e23431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, He X, Li S, Xu X, Chen X, Zhu H. Long non-coding RNA ucoo2kmd.1 regulates CD44-dependent cell growth by competing for miR-211–3p in colorectal cancer. PLoS One. 2016;11(3):e0151287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang G, Wu X, Li S, Xu X, Zhu H, Chen X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci Rep. 2016;6:26524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu Y, Qiao L, Zhou Y, Ma N, Wang C, Zhou J. Long non-coding RNA FOXD2-AS1 contributes to colorectal cancer proliferation through its interaction with microRNA-185-5p. Cancer Sci. 2018;109(7):2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel). 2017;9(12):171.

    Article  CAS  Google Scholar 

  47. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61.

    Article  CAS  PubMed  Google Scholar 

  48. Tao Y, Han T, Zhang T, Ma C, Sun C. LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget. 2017;8(22):36410–22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li J, Zhao LM, Zhang C, et al. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p. Oncol Res. 2020;28(1):51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yan Z, Bi M, Zhang Q, Song Y, Hong S. LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis. Biosci Rep. 2020;40(6):BSR20201025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lou T, Ke K, Zhang L, Miao C, Liu Y. LncRNA PART1 facilitates the malignant progression of colorectal cancer via miR-150-5p/LRG1 axis. J Cell Biochem. 2020;121(10):4271–81.

    Article  CAS  PubMed  Google Scholar 

  52. Kono M, Fujii T, Lim B, Karuturi MS, Tripathy D, Ueno NT. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 2017;3(9):1266–73.

    Article  PubMed  Google Scholar 

  53. LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803–15.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu B, Pan S, Xiao Y, Liu Q, Xu J, Jia L. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 2018;37(1):316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu H, Wei M, Jiang X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT Axis. Mol Ther Nucleic Acids. 2020;20:438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bai N, Ma Y, Zhao J, Li B. Knockdown of lncRNA HCP5 suppresses the progression of colorectal cancer by miR-299-3p/PFN1/AKT Axis. Cancer Manag Res. 2020;12:4747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li B, Sun H, Zhang J. LncRNA DSCAM-AS1 promotes colorectal cancer progression by acting as a molecular sponge of miR-384 to modulate AKT3 expression. Aging (Albany NY). 2020;12(10):9781–92.

    Article  CAS  Google Scholar 

  58. Lin H, Hong YG, Zhou JD, et al. LncRNA INHBA-AS1 promotes colorectal cancer cell proliferation by sponging miR-422a to increase AKT1 axis. Eur Rev Med Pharmacol Sci. 2020;24(19):9940–8.

    CAS  PubMed  Google Scholar 

  59. Xu G, Wang H, Yuan D, et al. RUNX1-activated upregulation of lncRNA RNCR3 promotes cell proliferation, invasion, and suppresses apoptosis in colorectal cancer via miR-1301-3p/AKT1 axis in vitro and in vivo. Clin Transl Oncol. 2020;22(10):1762–77.

    Article  CAS  PubMed  Google Scholar 

  60. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  61. Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–15.

    Article  CAS  PubMed  Google Scholar 

  62. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  CAS  PubMed  Google Scholar 

  63. Gao Z, Zhou H, Wang Y, Chen J, Ou Y. Regulatory effects of lncRNA ATB targeting miR-200c on proliferation and apoptosis of colorectal cancer cells. J Cell Biochem. 2020;121(1):332–43.

    Article  CAS  PubMed  Google Scholar 

  64. Gong T, Li Y, Feng L, et al. CASC21, a FOXP1 induced long non-coding RNA, promotes colorectal cancer growth by regulating CDK6. Aging (Albany NY). 2020;12(12):12086–106.

    Article  CAS  Google Scholar 

  65. Li F, Jiang Z, Shao X, Zou N. Downregulation of lncRNA NR2F2 antisense RNA 1 induces G1 arrest of colorectal cancer cells by downregulating cyclin-dependent kinase 6. Dig Dis Sci. 2020;65(2):464–9.

    Article  CAS  PubMed  Google Scholar 

  66. Ma X, Luo J, Zhang Y, Sun D, Lin Y. LncRNA MCM3AP-AS1 upregulates CDK4 by sponging miR-545 to suppress G1 arrest in colorectal cancer. Cancer Manag Res. 2020;12:8117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Q, Chen Z. lncRNA UASR1 sponges miR-107 in colorectal cancer to upregulate oncogenic CDK8 and promote cell proliferation. Oncol Lett. 2020;20(6):305.

    PubMed  PubMed Central  Google Scholar 

  68. Li W, Yu W, Jiang X, et al. The construction and comprehensive prognostic analysis of the LncRNA-associated competitive endogenous RNAs network in colorectal cancer. Front Genet. 2020;11:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015;1855(1):104–21.

    CAS  PubMed  Google Scholar 

  70. Jafarzadeh M, Soltani BM, Soleimani M, Hosseinkhani S. Epigenetically silenced LINC02381 functions as a tumor suppressor by regulating PI3K-Akt signaling pathway. Biochimie. 2020;171–172:63–71.

    Article  PubMed  CAS  Google Scholar 

  71. An Y, Zhang S, Zhang J, et al. Overexpression of lncRNA NLIPMT inhibits colorectal cancer cell migration and invasion by downregulating TGF-β1. Cancer Manag Res. 2020;12:6045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li N, Li J, Mi Q, et al. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker. J Cell Mol Med. 2020;24(19):11318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu B, Chen J, Hou C, Zhang L, Jia J. LncRNA H19 gene rs2839698 polymorphism is associated with a decreased risk of colorectal cancer in a Chinese Han population: a case-control study. J Clin Lab Anal. 2020;34(8): e23311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Q, Ding Z, Wan L, et al. Comprehensive analysis of the long noncoding RNA expression profile and construction of the lncRNA-mRNA co-expression network in colorectal cancer. Cancer Biol Ther. 2020;21(2):157–69.

    Article  CAS  PubMed  Google Scholar 

  75. Bai J, Xu J, Zhao J, Zhang R. LncRNA NBR2 suppresses migration and invasion of colorectal cancer cells by downregulating miRNA-21. Hum Cell. 2020;33(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  76. Lin M, Li Y, Xian J, et al. Long non-coding RNA AGER-1 inhibits colorectal cancer progression through sponging miR-182. Int J Biol Markers. 2020;35(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Dong S, Zhang J, et al. LncRNA NR2F1-AS1 regulates miR-371a-3p/TOB1 axis to suppress proliferation of colorectal cancer cells. Cancer Biother Radiopharm. 2020;35(10):760–4.

    Article  CAS  PubMed  Google Scholar 

  78. Yin SL, Xiao F, Liu YF, Chen H, Guo GC. Long non-coding RNA FENDRR restrains the aggressiveness of CRC via regulating miR-18a-5p/ING4 axis. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.29555.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zheng Z, Li X, You H, Zheng X, Ruan X. LncRNA SOCS2-AS1 inhibits progression and metastasis of colorectal cancer through stabilizing SOCS2 and sponging miR-1264. Aging (Albany NY). 2020;12(11):10517–26.

    Article  CAS  Google Scholar 

  80. Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12(2):84–8.

    Article  CAS  PubMed  Google Scholar 

  81. Qin Y, Sun W, Wang Z, et al. Long non-coding small nucleolar RNA host genes (SNHGs) in endocrine-related cancers. Onco Targets Ther. 2020;13:7699–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li M, Bian Z, Yao S, et al. Up-regulated expression of SNHG6 predicts poor prognosis in colorectal cancer. Pathol Res Pract. 2018;214(5):784–9.

    Article  CAS  PubMed  Google Scholar 

  83. Yao X, Lan Z, Lai Q, Li A, Liu S, Wang X. LncRNA SNHG6 plays an oncogenic role in colorectal cancer and can be used as a prognostic biomarker for solid tumors. J Cell Physiol. 2020;235(10):7620–34.

    Article  CAS  PubMed  Google Scholar 

  84. Lan Z, Yao X, Sun K, Li A, Liu S, Wang X. The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol. 2020;10:363.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang M, Duan W, Sun W. LncRNA SNHG6 promotes the migration, invasion, and epithelial-mesenchymal transition of colorectal cancer cells by miR-26a/EZH2 axis. Onco Targets Ther. 2019;12:3349–60.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xu M, Chen X, Lin K, et al. LncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol. 2019;12(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Li Z, Qiu R, Qiu X, Tian T. SNHG6 promotes tumor growth via repression of P21 in colorectal cancer. Cell Physiol Biochem. 2018;49(2):463–78.

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, Lai Q, He J, et al. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int J Med Sci. 2019;16(1):51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu C, Sun J, Leng X, Yang J. Long noncoding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag Res. 2019;11:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu Y, Xing Y, Chi F, Sun W, Zhang Z, Piao D. Long noncoding RNA SNHG6 promotes the progression of colorectal cancer through sponging miR-760 and activation of FOXC1. Onco Targets Ther. 2018;11:5743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu Y, Lv SX. The effect of JAK2 knockout on inhibition of liver tumor growth by inducing apoptosis, autophagy and anti-proliferation via STATs and PI3K/AKT signaling pathways. Biomed Pharmacother. 2016;84:1202–12.

    Article  CAS  PubMed  Google Scholar 

  92. He HL, Lee YE, Liang PI, et al. Overexpression of JAK2: a predictor of unfavorable prognosis for nasopharyngeal carcinoma. Future Oncol. 2016;12(16):1887–96.

    Article  CAS  PubMed  Google Scholar 

  93. Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. cells. Cells. 2019;8(8):854.

    Article  CAS  PubMed Central  Google Scholar 

  94. Lai F, Deng W, Fu C, Wu P, Cao M, Tan S. Long non-coding RNA SNHG6 increases JAK2 expression by targeting the miR-181 family to promote colorectal cancer cell proliferation. J Gene Med. 2020;22(12): e3262.

    Article  CAS  PubMed  Google Scholar 

  95. Wang X, Lan Z, He J, et al. LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int. 2019;19:234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fu Y, Yin Y, Peng S, et al. Small nucleolar RNA host gene 1 promotes development and progression of colorectal cancer through negative regulation of miR-137. Mol Carcinog. 2019;58(11):2104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bai J, Xu J, Zhao J, Zhang R. LncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation. J Cell Physiol. 2020;235(2):1453–68.

    Article  CAS  PubMed  Google Scholar 

  98. Dacheng W, Songhe L, Weidong J, Shutao Z, Jingjing L, Jiaming Z. LncRNA SNHG3 promotes the growth and metastasis of colorectal cancer by regulating miR-539/RUNX2 axis. Biomed Pharmacother. 2020;125: 110039.

    Article  PubMed  CAS  Google Scholar 

  99. Liao Q, Chen L, Zhang N, et al. Network analysis of KLF5 targets showing the potential oncogenic role of SNHG12 in colorectal cancer. Cancer Cell Int. 2020;20:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bian Z, Zhou M, Cui K, et al. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. J Exp Clin Cancer Res. 2021;40(1):360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Christensen LL, True K, Hamilton MP, et al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 2016;10(8):1266–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou L, Zhang Y, Jin J, Gu X. Correlation between lncRNA SNHG16 gene polymorphism and its interaction with environmental factors and susceptibility to colorectal cancer. Medicine (Baltimore). 2020;99(48): e23372.

    Article  CAS  Google Scholar 

  103. Parikh K, DeNittis AS, Marks G, Zeger E, Oncology J. Neoadjuvant chemotherapy and high-dose radiation using intensity-modulated radiotherapy followed by rectal sparing TEM for distal rectal cancer. J Radiation Onco. 2019;8(2):217–24.

    Article  CAS  Google Scholar 

  104. Xue Y, Ni T, Jiang Y, Li Y. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol Res. 2017;25(8):1305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen Z, Cai X, Chang L, et al. LINC00152 is a potential biomarker involved in the modulation of biological characteristics of residual colorectal cancer cells following chemoradiotherapy. Oncol Lett. 2018;15(4):4177–84.

    PubMed  PubMed Central  Google Scholar 

  106. Liang H, Zhao Q, Zhu Z, Zhang C, Zhang H. Long noncoding RNA LINC00958 suppresses apoptosis and radiosensitivity of colorectal cancer through targeting miR-422a. Cancer Cell Int. 2021;21(1):477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu F, Huang W, Hong J, et al. Long noncoding RNA LINC00630 promotes radio-resistance by regulating BEX1 gene methylation in colorectal cancer cells. IUBMB Life. 2020;72(7):1404–14.

    Article  CAS  PubMed  Google Scholar 

  108. Yang P, Yang Y, An W, et al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol. 2017;32(4):837–45.

    Article  CAS  PubMed  Google Scholar 

  109. Liu Y, Chen X, Chen X, et al. Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis. 2020;11(3):175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guo J, Ding Y, Yang H, Guo H, Zhou X, Chen X. Aberrant expression of lncRNA MALAT1 modulates radioresistance in colorectal cancer in vitro via miR-101-3p sponging. Exp Mol Pathol. 2020;115: 104448.

    Article  CAS  PubMed  Google Scholar 

  111. Li C, Liu H, Wei R, et al. LncRNA EGOT/miR-211-5p affected radiosensitivity of rectal cancer by competitively regulating ErbB4. Onco Targets Ther. 2021;14:2867–78.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Liu R, Zhang Q, Shen L, et al. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol. 2020;36(5):493–507.

    Article  CAS  PubMed  Google Scholar 

  113. Yang X, Liu W, Xu X, et al. Downregulation of long non-coding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep. 2018;40(3):1554–64.

    CAS  PubMed  Google Scholar 

  114. Yu Q, Zhang W, Zhou X, Shen W, Xing C, Yang X. Regulation of lnc-TLCD2-1 on radiation sensitivity of colorectal cancer and comprehensive analysis of its mechanism. Front Oncol. 2021;11: 714159.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zuo Z, Ji S, He L, Zhang Y, Peng Z, Han J. LncRNA TTN-AS1/miR-134-5p/PAK3 axis regulates the radiosensitivity of human large intestine cancer cells through the P21 pathway and AKT/GSK-3β/β-catenin pathway. Cell Biol Int. 2020;44(11):2284–92.

    Article  CAS  PubMed  Google Scholar 

  116. Zou Y, Yao S, Chen X, et al. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol. 2018;97(5):369–78.

    Article  CAS  PubMed  Google Scholar 

  117. Li Y, Castellano JJ, Moreno I, et al. LincRNA-p21 levels relates to survival and post-operative radiotherapy benefit in rectal cancer patients. Life (Basel). 2020;10(9):172.

    CAS  Google Scholar 

  118. Wang G, Li Z, Zhao Q, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.

    Article  CAS  PubMed  Google Scholar 

  119. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. LncRNA-miRNA-mRNA interaction network for colorectal cancer; An in silico analysis. Comput Biol Chem. 2020;89: 107370.

    Article  CAS  PubMed  Google Scholar 

  120. Joag MG, Sise A, Murillo JC, et al. Topical 5-fluorouracil 1% as primary treatment for ocular surface squamous neoplasia. Ophthalmology. 2016;123:1442–8.

    Article  PubMed  Google Scholar 

  121. Guo Z, Liu Z, Yue H, Wang J. Beta-elemene increases chemosensitivity to 5-fluorouracil through down-regulating microRNA-191 expression in colorectal carcinoma cells. J Cell Biochem. 2018;119(8):7032–9.

    Article  CAS  PubMed  Google Scholar 

  122. Liu F, Ai FY, Zhang DC, Tian L, Yang ZY, Liu SJ. LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med. 2020;9(3):1079–91.

    Article  CAS  PubMed  Google Scholar 

  123. Wang X, Jiang G, Ren W, Wang B, Yang C, Li M. LncRNA NEAT1 regulates 5-Fu sensitivity, apoptosis and invasion in colorectal cancer through the MiR-150-5p/CPSF4 Axis. Onco Targets Ther. 2020;13:6373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu Y, Hu H, Yuan Z, et al. LncRNA NEAT1 remodels chromatin to promote the 5-Fu resistance by maintaining colorectal cancer stemness. Cell Death Dis. 2020;11(11):962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xian Z, Hu B, Wang T, et al. lncRNA UCA1 contributes to 5-fluorouracil resistance of colorectal cancer cells through miR-23b-3p/ZNF281 axis. Onco Targets Ther. 2020;13:7571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang L, Liu J, Lin S, Tan J, Huang B, Lin J. Qingjie Fuzheng granule inhibited the migration and invasion of colorectal cancer cells by regulating the lncRNA ANRIL/let-7a/TGF-β1/Smad axis. Evid Based Complement Alternat Med. 2020;2020:5264651.

    PubMed  PubMed Central  Google Scholar 

  127. Zhou H, Xiong Y, Peng L, Wang R, Zhang H, Fu Z. LncRNA-cCSC1 modulates cancer stem cell properties in colorectal cancer via activation of the Hedgehog signaling pathway. J Cell Biochem. 2020;121(3):2510–24.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang Z, Li L, Hou Z, et al. LncRNA HAND2-AS1 inhibits 5-fluorouracil resistance by modulating miR-20a/PDCD4 axis in colorectal cancer. Cell Signal. 2020;66: 109483.

    Article  CAS  PubMed  Google Scholar 

  129. Li J, Ma J, Zhang X, Tai X, Liu L, Zhang L. Long non-coding RNA (lncRNA) BMP/OP-responsive gene (BORG) promotes development of chemoresistance of colorectal cancer cells to carboplatin. Med Sci Monit. 2020;26: e919103.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hong S, Yan Z, Song Y, Bi M, Li S. LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer. Aging (Albany NY). 2020;12(6):5183–94.

    Article  CAS  Google Scholar 

  131. Walker AS, Johnson EK, Maykel JA, et al. Future directions for the early detection of colorectal cancer recurrence. J Cancer. 2014;5(4):272–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Aziz MA, Yousef Z, Saleh AM, Mohammad S, Al KB. Towards personalized medicine of colorectal cancer. Crit Rev Oncol Hematol. 2017;118:70–8.

    Article  PubMed  Google Scholar 

  133. Huang R, Zhou L, Chi Y, Wu H, Shi L. LncRNA profile study reveals a seven-lncRNA signature predicts the prognosis of patients with colorectal cancer. Biomark Res. 2020;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sun Y, Peng P, He L, Gao X. Identification of lnc RNAs related to prognosis of patients with colorectal cancer. Technol Cancer Res Treat. 2020;19:1533033820962120.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chu Y, Liu Z, Liu J, Yu L, Zhang D, Pei F. Characterization of lncRNA-perturbed TLR-signaling network identifies novel lncRNA prognostic biomarkers in colorectal cancer. Front Cell Dev Biol. 2020;8:503.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li S, Chen S, Wang B, Zhang L, Su Y, Zhang X. A robust 6-lncRNA prognostic signature for predicting the prognosis of patients with colorectal cancer metastasis. Front Med (Lausanne). 2020;7:56.

    Article  Google Scholar 

  137. Shen X, Xue Y, Cong H, et al. Circulating lncRNA DANCR as a potential auxillary biomarker for the diagnosis and prognostic prediction of colorectal cancer. Biosci Rep. 2020;40(3):BSR20191481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bi C, Cui H, Fan H, Li L. LncRNA LINC01116 promotes the development of colorectal cancer by targeting miR-9-5p/STMN1. Onco Targets Ther. 2020;13:10547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cui W, Wang Y, Shen X, Wu X, Liu H, Xu X. High-expression of LncRNA MAFG-AS1 is associated with the prognostic of patients with colorectal cancer. Rev Assoc Med Bras (1992). 2020;66(11):1530–5.

    Article  Google Scholar 

  140. Chen S, Zhang C, Feng M. Prognostic value of LncRNA HOTAIR in colorectal cancer: a meta-analysis. Open Med (Wars). 2020;15:76–83.

    Article  CAS  Google Scholar 

  141. Chen W, Tu Q, Yu L, et al. LncRNA ADAMTS9-AS1, as prognostic marker, promotes cell proliferation and EMT in colorectal cancer. Hum Cell. 2020;33(4):1133–41.

    Article  CAS  PubMed  Google Scholar 

  142. Qian J, Garg A, Li F, Shen Q, Xiao K. lncRNA LUNAR1 accelerates colorectal cancer progression by targeting the miR-495-3p/MYCBP axis. Int J Oncol. 2020;57(5):1157–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang Y, Zhang D, Zhang C, Sun Y. The diagnostic and prognostic value of serum lncRNA NEAT1 in colorectal cancer. Cancer Manag Res. 2020;12:10985–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu J, Dong W, Liang J. Extracellular vesicle-transported long non-coding RNA (LncRNA) X inactive-specific transcript (XIST) in serum is a potential novel biomarker for colorectal cancer diagnosis. Med Sci Monit. 2020;26: e924448.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Salomaa V, Havulinna A, Saarela O, et al. Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One. 2010;5(4): e10100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ye S, Lu Y, Ru Y, et al. LncRNAs GACAT3 and LINC00152 regulate each other through miR-103 and are associated with clinicopathological characteristics in colorectal cancer. J Clin Lab Anal. 2020;34(9): e23378.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu W, Zhou G, Wang H, et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer. 2020;146(10):2901–12.

    Article  CAS  PubMed  Google Scholar 

  148. Yang Q, Zheng W, Shen Z, Huang G, Yang G. MicroRNA binding site polymorphisms of the long-chain noncoding RNA MALAT1 are associated with risk and prognosis of colorectal cancer in Chinese Han population. Genet Test Mol Biomarkers. 2020;24(5):239–48.

    Article  CAS  PubMed  Google Scholar 

  149. Luo R, Song J, Zhang W, Ran L. Identification of MFI2-AS1, a novel pivotal lncRNA for prognosis of stage III/IV colorectal cancer. Dig Dis Sci. 2020;65(12):3538–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the help from Dr. Caowen Wang and Prof. Xuelin Yang of Analysis and Testing Center, China Three Gorges University for their suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81602559), sponsored by Research Fund for Excellent Dissertation of China Three Gorges University (2019SSPY107) and by Youth Science Fund Program of China Three Gorges University (grant no. 1115064).

Author information

Authors and Affiliations

Authors

Contributions

YL wrote and revised the manuscript. YW reviewed the literature and approved the version to be published. ZZ, JB and HS participated in the revision and polishing of the manuscript.

Corresponding author

Correspondence to Yanhua Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, Y., Zhang, Z. et al. Potentials of long non-coding RNAs as biomarkers of colorectal cancer. Clin Transl Oncol 24, 1715–1731 (2022). https://doi.org/10.1007/s12094-022-02834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02834-7

Keywords

Navigation