Skip to main content

Advertisement

Log in

SMEK1 promotes lung adenocarcinoma proliferation and invasion by activating Wnt/β-catenin signaling pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

SMEK1, also known as PP4R3α, the regulatory subunit 3α of serine and threonine phosphatase PP4, participates in diversely critical biological processes such as the integration of centromere, deacetylation of histones, asymmetric divisions of neuroblast, and other crucial cellular activities. SMEK1 was formerly reported to play a part in carcinogenesis. This study aims to reveal the role of SMEK1 in lung adenocarcinoma and the underlying molecular mechanism.

Methods

Using immunohistochemical (IHC) staining, the protein level of SMEK1 in lung adenocarcinoma and adjacent non-tumor tissue was detected. The functional role of SMEK1 in cell proliferation and invasion was explored using cell counting kit-8 and Transwell assay, respectively. Xenograft tumor experiment was used to investigate the effect of SMEK1 on tumor growth in vivo. The alteration of Wnt/β-catenin signaling pathway was detected by Western blotting, quantitative PCR, and dual-luciferase reporter assays.

Results

SMEK1 was highly expressed at the protein level in lung adenocarcinoma compared to the adjacent non-tumor tissue. In vitro, suppression of SMEK1 significantly decreased the proliferation, migration, and invasion of lung adenocarcinoma cell lines, while overexpression of SMEK1 enhanced above abilities. The xenograft model demonstrated that down-regulation of SMEK1 significantly inhibited tumor growth in vivo. In addition, we found that SMEK1 could positively regulate Wnt/β-catenin signaling in lung adenocarcinoma cell lines.

Conclusions

SMEK1 exerts a cancer-promoting effect in lung adenocarcinoma by activating Wnt/β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87. https://doi.org/10.1016/j.ejca.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  4. Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell. 2020;182(1):200–25. https://doi.org/10.1016/j.cell.2020.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377(9):849–61. https://doi.org/10.1056/NEJMra1703413.

    Article  CAS  PubMed  Google Scholar 

  6. Lamberti G, Andrini E, Sisi M, Rizzo A, Parisi C, Di Federico A, et al. Beyond EGFR, ALK and ROS1: current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma. Crit Rev Oncol Hematol. 2020;156: 103119. https://doi.org/10.1016/j.critrevonc.2020.103119.

    Article  PubMed  Google Scholar 

  7. Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Buttner R. Precision medicine in non-small cell lung cancer: current applications and future directions. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.07.009.

    Article  PubMed  Google Scholar 

  8. Park J, Lee D-H. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep. 2020;53(4):181–90. https://doi.org/10.5483/BMBRep.2020.53.4.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, et al. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol Cell Proteomics. 2005;4(11):1725–40. https://doi.org/10.1074/mcp.M500231-MCP200.

    Article  CAS  PubMed  Google Scholar 

  10. Mendoza MC, Du F, Iranfar N, Tang N, Ma H, Loomis WF, et al. Loss of SMEK, a novel, conserved protein, suppresses MEK1 null cell polarity, chemotaxis, and gene expression defects. Mol Cell Biol. 2005;25(17):7839–53. https://doi.org/10.1128/MCB.25.17.7839-7853.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su C, Li Z, Cheng J, Li L, Zhong S, Liu L, et al. The protein phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by antagonizing the MAPK cascade in arabidopsis. Dev Cell. 2017;41(5):527–39. https://doi.org/10.1016/j.devcel.2017.05.008.

    Article  CAS  PubMed  Google Scholar 

  12. Sen I, Zhou X, Chernobrovkin A, Puerta-Cavanzo N, Kanno T, Salignon J, et al. DAF-16/FOXO requires protein Phosphatase 4 to initiate transcription of stress resistance and longevity promoting genes. Nat Commun. 2020;11(1):138. https://doi.org/10.1038/s41467-019-13931-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sousa-Nunes R, Chia W, Somers WG. Protein phosphatase 4 mediates localization of the Miranda complex during Drosophila neuroblast asymmetric divisions. Genes Dev. 2009;23(3):359–72. https://doi.org/10.1101/gad.1723609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lipinszki Z, Lefevre S, Savoian MS, Singleton MR, Glover DM, Przewloka MR. Centromeric binding and activity of protein Phosphatase 4. Nat Commun. 2015;6(1):1. https://doi.org/10.1038/ncomms6894.

    Article  Google Scholar 

  15. Lyu J, Jho E-H, Lu W. Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Res. 2011;21(6):911–21. https://doi.org/10.1038/cr.2011.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang WH, Choi SH, Moon BS, Cai M, Lyu J, Bai J, et al. Smek1/2 is a nuclear chaperone and cofactor for cleaved Wnt receptor Ryk, regulating cortical neurogenesis. Proc Natl Acad Sci USA. 2017;114(50):E10717–25. https://doi.org/10.1073/pnas.1715772114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, et al. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc Natl Acad Sci USA. 2010;107(41):17704–9. https://doi.org/10.1073/pnas.1012665107.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dong SM, Byun HJ, Kim BR, Lee SH, Trink B, Rho SB. Tumor suppressor BLU enhances pro-apoptotic activity of sMEK1 through physical interaction. Cell Signal. 2012;24(6):1208–14. https://doi.org/10.1016/j.cellsig.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  19. Byun HJ, Kim BR, Yoo R, Park SY, Rho SB. sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR. Apoptosis. 2012;17(10):1095–103. https://doi.org/10.1007/s10495-012-0751-0.

    Article  CAS  PubMed  Google Scholar 

  20. Kim BR, Seo SH, Park MS, Lee SH, Kwon Y, Rho SB. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget. 2015;6(31):31830–43. https://doi.org/10.18632/oncotarget.5570.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Q, Wang G, Niu L, Zhao S, Li J, Zhang Z, et al. Exosomal MiR-1290 promotes angiogenesis of hepatocellular carcinoma via targeting SMEK1. J Oncol. 2021;2021:6617700. https://doi.org/10.1155/2021/6617700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang B, Zhao A, Sun L, Zhong X, Zhong J, Wang H, et al. Protein phosphatase PP4 is overexpressed in human breast and lung tumors. Cell Res. 2008;18(9):974–7. https://doi.org/10.1038/cr.2008.274.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu K, Dai Z, Pan Q, Wang Z, Yang GH, Yu L, et al. Metadherin promotes hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2011;17(23):7294–302. https://doi.org/10.1158/1078-0432.CCR-11-1327.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235(5):784–95. https://doi.org/10.1002/path.4492.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J, Fan J, Tang Z, Dai Z, Luo R, Jia H, et al. Metadherin–PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT–β-catenin signaling pathway. Carcinogenesis. 2020;41(2):130–8. https://doi.org/10.1093/carcin/bgz065.

    Article  CAS  PubMed  Google Scholar 

  26. Wu HI, Brown JA, Dorie MJ, Lazzeroni L, Brown JM. Genome-wide identification of genes conferring resistance to the anticancer agents cisplatin, oxaliplatin, and mitomycin C. Cancer Res. 2004;64(11):3940–8. https://doi.org/10.1158/0008-5472.Can-03-3113.

    Article  CAS  PubMed  Google Scholar 

  27. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987;50(4):649–57. https://doi.org/10.1016/0092-8674(87)90038-9.

    Article  CAS  PubMed  Google Scholar 

  28. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5. https://doi.org/10.1038/nature04108.

    Article  CAS  PubMed  Google Scholar 

  29. Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280(5363):596–9. https://doi.org/10.1126/science.280.5363.596.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47. https://doi.org/10.1016/s0092-8674(02)00685-2.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220(2):292–6. https://doi.org/10.1002/jcp.21791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramos-Garcia P, Gil-Montoya JA, Scully C, Ayen A, Gonzalez-Ruiz L, Navarro-Trivino FJ, et al. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis. 2017;23(7):897–912. https://doi.org/10.1111/odi.12620.

    Article  CAS  PubMed  Google Scholar 

  33. Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020;9(12):1. https://doi.org/10.3390/cells9122648.

    Article  CAS  Google Scholar 

  34. Gonzalez-Ruiz L, Gonzalez-Moles MA, Gonzalez-Ruiz I, Ruiz-Avila I, Ayen A, Ramos-Garcia P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res. 2020;33(6):788–805. https://doi.org/10.1111/pcmr.12874.

    Article  CAS  PubMed  Google Scholar 

  35. Qie S, Diehl JA. Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol. 2020;67(Pt 2):159–70. https://doi.org/10.1016/j.semcancer.2020.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aguilera KY, Dawson DW. WNT ligand dependencies in pancreatic cancer. Front Cell Dev Biol. 2021;9:671022. https://doi.org/10.3389/fcell.2021.671022.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhong ZA, Michalski MN, Stevens PD, Sall EA, Williams BO. Regulation of Wnt receptor activity: implications for therapeutic development in colon cancer. J Biol Chem. 2021;14:100782. https://doi.org/10.1016/j.jbc.2021.100782.

    Article  CAS  Google Scholar 

  39. Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling—lung cancer is no exception. Respir Res. 2017;18(1):167. https://doi.org/10.1186/s12931-017-0650-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li XQ, Yang XL, Zhang G, Wu SP, Deng XB, Xiao SJ, et al. Nuclear β-catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer. J Transl Med. 2013;6(11):114. https://doi.org/10.1186/1479-5876-11-114.

    Article  CAS  Google Scholar 

  41. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62. https://doi.org/10.1016/j.cell.2009.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pacheco-Pinedo EC, Durham AC, Stewart KM, Goss AM, Lu MM, Demayo FJ, et al. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest. 2011;121(5):1935–45. https://doi.org/10.1172/jci44871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81873878, 32070586, and 81671114) and Shandong Provincial Natural Science Foundation (ZR2020MH086, ZR2020LZL018).

Author information

Authors and Affiliations

Authors

Contributions

QJL, JSL, and DDC designed the study. DDC performed the experiments, analyzed the data, and drafted the manuscript. JSL revised the manuscript and helped with English editing. SG, FG, and AL helped with experiments. QJL and JXL contributed essential reagents and tools. QJL and JSL supervised the data collection and the analysis of the data.

Corresponding authors

Correspondence to Jisheng Li or Qiji Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethic Committee of Shandong University.

Informed consent

Written informed consent was obtained from participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Gao, S., Gao, F. et al. SMEK1 promotes lung adenocarcinoma proliferation and invasion by activating Wnt/β-catenin signaling pathway. Clin Transl Oncol 25, 976–986 (2023). https://doi.org/10.1007/s12094-022-03001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03001-8

Keywords

Navigation