Skip to main content

Advertisement

Log in

The stem cell-specific long non-coding RNAs in leukemia

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Leukemia is defined as a heterogeneous group of hematological cancers whose prevalence is on the rise worldwide. Despite the large body of studies, the etiology of leukemia has not been fully elucidated. Leukemia stem cells (LSCs) are a subpopulation of cancer cells that sustain the growth of the leukemic clone and are the main culprit for the maintenance of the neoplasm. In contrast to most leukemia cells, LSCs are resistant to chemo- and radiotherapy. Several recent studies demonstrated the altered expression profile of long non-coding RNAs (lncRNAs) in LSCs and shed light on the role of lncRNAs in the survival, proliferation, and differentiation of LSCs. LncRNAs are transcripts longer than 200 nucleotides that are implicated in several cellular and molecular processes such as gene expression, apoptosis, and carcinogenesis. Likewise, lncRNAs have shown a prognostic marker in leukemia patients and represent novel treatment options. Herein, we review the current knowledge concerning lncRNAs’ implication in the pathogenesis of LSCs and discuss their prognostic, diagnostic, and therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hao T, Zhang C, Wang Z, Buck A, Vonderfecht SL, Ermel R, Kim Y, Chen W. An aging mouse model of human chronic myeloid leukemia. Oncogene. 2021;40:3152–63.

    Article  CAS  Google Scholar 

  2. Tebbi CK. Etiology of acute leukemia: a review. Cancers. 2021;13:2256.

    Article  CAS  Google Scholar 

  3. Dong Y, Shi O, Zeng Q, Lu X, Wang W, Li Y, Wang Q. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 2020;9:1–11.

    Article  Google Scholar 

  4. Hwang SM. Classification of acute myeloid leukemia. Blood Res. 2020;55:S1–4.

    Article  Google Scholar 

  5. Mahmood N, Shahid S, Bakhshi T, Riaz S, Ghufran H, Yaqoob M. Identification of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML) approach. Med Biol Eng Comput. 2020;58:2631–40.

    Article  Google Scholar 

  6. Wiedmeier-Nutor J, Leis J. Chronic lymphocytic leukemia: chemotherapy free and other novel therapies including CAR T. Curr Treat Options in Oncol. 2022. https://doi.org/10.1007/s11864-022-00953-5.

    Article  Google Scholar 

  7. Zhang L, Luo H, Ni H-M, Liu S, Xing H, Zhang J, Sellin M, Peter Breslin S, Wei W, Denning MF. Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Repo. 2022. https://doi.org/10.1016/j.stemcr.2022.04.009.

    Article  Google Scholar 

  8. Molina JC, Shah NN. Monoclonal antibody-based treatment and other new agents for B-lineage acute lymphoblastic leukemia. In: Litzow ML, Raetz EA, editors. Clinical management of acute lymphoblastic leukemia. Cham: Springer; 2022. p. 295–328.

    Chapter  Google Scholar 

  9. Marks DI, Clifton-Hadley L, Copland M, Hussain J, Menne TF, McMillan A, Moorman AV, Morley N, Okasha D, Patel B. In-vivo T-cell depleted reduced-intensity conditioned allogeneic haematopoietic stem-cell transplantation for patients with acute lymphoblastic leukaemia in first remission: results from the prospective, single-arm evaluation of the UKALL14 trial. Lancet Haematol. 2022;9:e276–88.

    Article  Google Scholar 

  10. Strickland SA, Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022;171: 103607.

    Article  Google Scholar 

  11. Benchikh S, Bousfiha A, El Hamouchi A, Soro SGC, Malki A, Nassereddine S. Chronic myeloid leukemia: cytogenetics and molecular biology’s part in the comprehension and management of the pathology and treatment evolution. Egypt J Med Hum Genet. 2022;23:29.

    Article  Google Scholar 

  12. Coombs CC, Tallman MS, Levine RL. Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol. 2016;13:305–18.

    Article  CAS  Google Scholar 

  13. Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. Iran J Basic Med Sci. 2019;22:581.

    Google Scholar 

  14. Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther. 2020;11:1–13.

    Article  Google Scholar 

  15. Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther. 2021;12:603.

    Article  CAS  Google Scholar 

  16. Walcher L, Kistenmacher A-K, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun A-R, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

    Article  CAS  Google Scholar 

  17. Wang X, Huang S, Chen J-L. Understanding of leukemic stem cells and their clinical implications. Mol Cancer. 2017;16:1–10.

    Article  Google Scholar 

  18. Marchand T, Pinho S. Leukemic stem cells: from leukemic niche biology to treatment opportunities. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.775128.

    Article  Google Scholar 

  19. Korn C, Méndez-Ferrer S. Myeloid malignancies and the microenvironment. Blood. 2017;129:811–22.

    Article  CAS  Google Scholar 

  20. Arnold CR, Mangesius J, Skvortsova I-I, Ganswindt U. The role of cancer stem cells in radiation resistance. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00164.

    Article  Google Scholar 

  21. Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The role of notch, hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol. 2021;9:650772–650772.

    Article  Google Scholar 

  22. Ito K, Ito K. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13225822.

    Article  Google Scholar 

  23. Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M. Oncogenic roles of small nucleolar RNA Host Gene 7 (SNHG7) long noncoding RNA in human cancers and potentials. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2021.809345.

    Article  Google Scholar 

  24. Xu W-W, Jin J, Wu X-y, Ren Q-L, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Inter. 2022;22:1–9.

    Article  CAS  Google Scholar 

  25. Farzaneh M, Najafi S, Dari MAG, Sheykhi-Sabzehpoush M, Dayer D, Cheraghzadeh M, Azizidoost S. Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. Clin Transl Oncol. 2022. https://doi.org/10.1007/s12094-022-02914-8.

    Article  Google Scholar 

  26. Kirtonia A, Ashrafizadeh M, Zarrabi A, Hushmandi K, Zabolian A, Bejandi AK, Rani R, Pandey AK, Baligar P, Kumar V, et al. Long noncoding RNAs: a novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol. 2022;237:450–65.

    Article  CAS  Google Scholar 

  27. Gao S, Zhou B, Li H, Huang X, Wu Y, Xing C, Yu X, Ji Y. Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol. 2018;67:32-40.e33.

    Article  CAS  Google Scholar 

  28. Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol. 2020;17:784–93.

    Article  CAS  Google Scholar 

  29. Wang W-T, Chen T-Q, Zeng Z-C, Pan Q, Huang W, Han C, Fang K, Sun L-Y, Yang Q-Q, Wang D, et al. The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol. 2020;13:78.

    Article  Google Scholar 

  30. Cui C, Wang Y, Gong W, He H, Zhang H, Shi W, Wang H. Long non-coding RNA LINC00152 regulates self-renewal of leukemia stem cells and induces chemo-resistance in acute myeloid leukemia. Front Oncol. 2021;11: 694021.

    Article  Google Scholar 

  31. Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long non-coding RNA DANCR in cancer: roles, mechanisms, and implications. Front Cell Dev Biol. 2021;9: 753706.

    Article  Google Scholar 

  32. Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: a valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract. 2018;214:801–5.

    Article  CAS  Google Scholar 

  33. Jin S-J, Jin M-Z, Xia B-R, Jin W-L. Long non-coding RNA DANCR as an emerging therapeutic target in human cancers. Front Oncol. 2019;9:1225.

    Article  Google Scholar 

  34. Bill M, Papaioannou D, Karunasiri M, Kohlschmidt J, Pepe F, Walker CJ, Walker AE, Brannan Z, Pathmanathan A, Zhang X, et al. Expression and functional relevance of long non-coding RNAs in acute myeloid leukemia stem cells. Leukemia. 2019;33:2169–82.

    Article  CAS  Google Scholar 

  35. Al-Kershi S, Bhayadia R, Ng M, Verboon L, Emmrich S, Gack L, Schwarzer A, Strowig T, Heckl D, Klusmann J-H. The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv. 2019;3:4252–63.

    Article  CAS  Google Scholar 

  36. Al-Kershi S, Bhayadia R, Ng M, Verboon L, Emmrich S, Gack L, Schwarzer A, Strowig T, Heckl D, Klusmann J-H. The stem cell–specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv. 2019;3:4252–63.

    Article  CAS  Google Scholar 

  37. Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, Fung TK, Zeisig BB, Cui Y, Zha J, et al. HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell. 2019;36:645-659.e648.

    Article  CAS  Google Scholar 

  38. Wang Y-H, Lin C-C, Hsu C-L, Hung S-Y, Yao C-Y, Lee S-H, Tsai C-H, Hou H-A, Chou W-C, Tien H-F. Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125. Ann Hematol. 2021;100:487–98.

    Article  CAS  Google Scholar 

  39. Cai Z, Lu X, Zhang C, Nelanuthala S, Aguilera F, Hadley A, Ramdas B, Fang F, Nephew K, Kotzin JJ, et al. Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by proinflammatory cytokine-induced lncRNA Morrbid. J Clin Investig. 2021;131: e140707.

    Article  CAS  Google Scholar 

  40. Gourvest M, Brousset P, Bousquet M. Long noncoding RNAs in acute myeloid leukemia: functional characterization and clinical relevance. Cancers. 2019;11:1638.

    Article  CAS  Google Scholar 

  41. Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, Fu Y, Zhai A, Bi C. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26.

    Article  CAS  Google Scholar 

  42. Zhao W, Liu Y, Zhang C, Duan C. Multiple roles of exosomal long noncoding RNAs in cancers. Biomed Res Int. 2019;2019:1460572.

    Article  Google Scholar 

  43. Kalluri R. The biology and function of exosomes in cancer. J Clin Investig. 2016;126:1208–15.

    Article  Google Scholar 

  44. Jiang N, Pan J, Fang S, Zhou C, Han Y, Chen J, Meng X, Jin X, Gong Z. Liquid biopsy: circulating exosomal long noncoding RNAs in cancer. Clin Chim Acta. 2019;495:331–7.

    Article  CAS  Google Scholar 

  45. Papaioannou D, Nicolet D, Ozer HG, Mrózek K, Volinia S, Fadda P, Carroll AJ, Kohlschmidt J, Kolitz JE, Wang ES. Prognostic and biologic relevance of clinically applicable long noncoding RNA profiling in older patients with cytogenetically normal acute myeloid leukemia. Mol Cancer Ther. 2019;18:1451–9.

    Article  CAS  Google Scholar 

  46. Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA expression in leukemia. J Cancer. 2020;11:4284.

    Article  Google Scholar 

  47. Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, Zhang R, Chen Z, Wang K. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis. 2018;9:1–14.

    Google Scholar 

  48. Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 2020;19:1–21.

    Google Scholar 

  49. Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA, Núñez-Enríquez JC, Ramírez-Bello J, Mejía-Aranguré JM, Jiménez-Morales S. Long non-coding RNA and acute leukemia. Int J Mol Sci. 2019;20:735.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Ethical No. IR.AJUMS.REC.1401.242).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SN, AN, MSHS, FND and OA have made contributions to the writing of the manuscript. MF and SHA have made contributions to the revision of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ava Nasrolahi or Shirin Azizidoost.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, M., Najafi, S., Sheykhi-Sabzehpoush, M. et al. The stem cell-specific long non-coding RNAs in leukemia. Clin Transl Oncol 25, 345–351 (2023). https://doi.org/10.1007/s12094-022-02952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02952-2

Keywords

Navigation