Skip to main content

Advertisement

Log in

Integrated analysis of ALK higher expression in human cancer and downregulation in LUAD using RNA molecular scissors

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Anaplastic lymphoma kinase (ALK) is an endorsed molecular target in ALK-rearranged carcinomas, including lung adenocarcinoma. However, the clinical advantage of targeting ALK using druggable inhibitors is almost universally restricted by the development of drug resistance. Therefore, a strategy for combating ALK overexpression remains paramount for ALK-driven cancer.

Methods

We systemically analyzed the overexpression pattern of ALK and its clinical consequences, genetic alterations, and their significance in cancer hallmark genes, and correlation using integrated multidimensional approaches. The LwCas13a RNA molecular scissors was used to downregulate ALK-rearrangement by leveraging two target guide RNAs in lung adenocarcinoma (LUAD) cells. Immunocytochemistry, immunoblotting, and MTT assays were conducted to validate the downregulation.

Results

We found elevated levels of ALK in several malignancies, including LUAD, than in normal tissues. Higher expression of ALK was significantly associated with worse or shorter survival than patients with lower expression. We identified numerous genetic alterations in ALK, which potentially alter the cancer hallmark genes, including STAT1 and CTSL, in patients with LUAD. Next, we observed that the LwCas13a molecular scissors robustly downregulated both phosphorylated and total ALK chimera protein expression in LUAD cells compared to the control. Furthermore, we found that downregulation of ALK chimera protein substantially inhibited cell viability and induced cell death, including apoptosis.

Conclusion

Our findings suggest a basis for ALK as a prognostic biomarker and the LwCas13a molecular scissors successfully downregulated the onco-driver ALK-rearrangement protein, which will potentially pave the way toward the development of novel therapeutic strategies for ALK-driven cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary file.

Abbreviations

LwCas13a:

CRISPR-associated protein 13a originated from Leptotrichia wadei

RAS-MAPK:

Rat sarcoma–mitogen-activated protein kinase

PI3K-AKT:

Phosphatidylinositol 3 kinase–protein kinase B

JAK-STAT:

Janus kinase–signal transducer and activator of transcription

MEK-ERK:

Mitogen-activated protein kinase–extracellular signal = regulated kinase

CRKL-C3G:

CRK-like proto-oncogene–guanine nucleotide-releasing factor 2

PTPN11:

Tyrosine-protein phosphatase non-receptor type 11

Src:

Proto-oncogene tyrosine-protein kinase Src

FAK:

Focal adhesion kinase

Shc-GRB2:

Shc-transforming protein–growth factor receptor bound protein 2

IRS2:

Insulin receptor substrate 2

GSK-3a:

Glycogen synthase kinase-3 alpha

FRS2:

Fibroblast growth factor receptor substrate 2

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Carrera S, Buque A, Azkona E, Aresti U, Calvo B, Sancho A, Arruti M, Nuño M, Rubio I, de Lobera AR, et al. Epidermal growth factor receptor tyrosine-kinase inhibitor treatment resistance in non-small cell lung cancer: biological basis and therapeutic strategies. Clin Transl Oncol. 2014;16:339–50. https://doi.org/10.1007/s12094-013-1143-9.

    Article  CAS  PubMed  Google Scholar 

  3. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S-I, Watanabe H, Kurashina K, Hatanaka H, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  4. Sabir SR, Yeoh S, Jackson G, Bayliss R. EML4-ALK variants: biological and molecular properties, and the implications for patients. Cancers. 2017;9:118.

    Article  Google Scholar 

  5. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, N.Y.) 2004; 304, 1497–1500. https://doi.org/10.1126/science.1099314.

  6. Jurisic V, Vukovic V. EGFR Polymorphism and Survival of NSCLC Patients Treated with TKIs: A Systematic Review and Meta-Analysis. 2020;2020:1973241. https://doi.org/10.1155/2020/1973241.

    Article  CAS  Google Scholar 

  7. Obradovic J, Todosijevic J, Jurisic V. Application of the conventional and novel methods in testing EGFR variants for NSCLC patients in the last 10 years through different regions: a systematic review. Mol Biol Rep. 2021;48:3593–604. https://doi.org/10.1007/s11033-021-06379-w.

    Article  CAS  PubMed  Google Scholar 

  8. Santis G, Angell R, Nickless G, Quinn A, Herbert A, Cane P, Spicer J, Breen R, McLean E, Tobal K. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PLoS ONE. 2011;6: e25191. https://doi.org/10.1371/journal.pone.0025191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizuta H, Okada K, Araki M, Adachi J, Takemoto A, Kutkowska J, Maruyama K, Yanagitani N, Oh-hara T, Watanabe K, et al. Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nat Commun. 2021;12:1261. https://doi.org/10.1038/s41467-021-21396-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.) 2012; 337, 816–821. https://doi.org/10.1126/science.1225829.

  11. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, et al. RNA targeting with CRISPR–Cas13. Nature. 2017;550:280–4. https://doi.org/10.1038/nature24049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, Shi J, Wang Y, Nie G. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 2018;431:171–81. https://doi.org/10.1016/j.canlet.2018.05.042.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K, Kang C. The CRISPR-Cas13a Gene-Editing System Induces Collateral Cleavage of RNA in Glioma. Cells. 2019;6:1901299. https://doi.org/10.1002/advs.201901299.

    Article  CAS  Google Scholar 

  14. Gao J, Luo T, Lin N, Zhang S, Wang J. A New Tool for CRISPR-Cas13a-Based Cancer Gene Therapy. Molecular Therapy - Oncolytics. 2020;19:79–92. https://doi.org/10.1016/j.omto.2020.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park S-J, Yoon B-H, Kim S-K, Kim S-Y. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genom. 2019;12:101. https://doi.org/10.1186/s12920-019-0514-7.

    Article  Google Scholar 

  16. Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021; 22, 2622.

  17. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F. A pathology atlas of the human cancer transcriptome. Science (New York, N.Y.) 2017, 357.

  18. Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009;2:18. https://doi.org/10.1186/1755-8794-2-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;11:6047. https://doi.org/10.1038/s41598-021-84787-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1–pl1. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagy Á, Győrffy B. muTarget: A platform linking gene expression changes and mutation status in solid tumors. Int J Cancer. 2021;148:502–11. https://doi.org/10.1002/ijc.33283.

    Article  CAS  PubMed  Google Scholar 

  22. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169. https://doi.org/10.1186/s12859-015-0611-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas R, et al. <em>EML4-ALK</em> fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14:4275–83. https://doi.org/10.1158/1078-0432.ccr-08-0168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saifullah, Tsukahara T. Genotyping of single nucleotide polymorphisms using the SNP-RFLP method. Biosci Trends 2018; 12, 240–246. https://doi.org/10.5582/bst.2018.01102.

  25. Saifullah, Sakari M, Suzuki T, Yano S, Tsukahara T. Effective RNA knockdown using CRISPR-Cas13a and molecular targeting of the EML4-ALK transcript in H3122 lung cancer cells. Int J Mol Sci 2020; 21, 8904.

  26. Saifullah, Fuke S, Nagasawa H, Tsukahara T. Single nucleotide recognition using a probes-on-carrier DNA chip. BioTechniques 2019; 66, 73–78. https://doi.org/10.2144/btn-2018-0088.

  27. Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M. TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 2011;239:115–22. https://doi.org/10.1007/s00232-010-9309-7.

    Article  CAS  PubMed  Google Scholar 

  28. Saifullah S, Sakari M, Suzuki T, Yano S, Tsukahara T. P28–11 The CRISPR-Cas13a gene-editing system underlies a potential therapeutic strategy for EML4-ALK-positive lung cancer cells. Ann Oncol. 2021;32:S347. https://doi.org/10.1016/j.annonc.2021.05.737.

    Article  Google Scholar 

  29. Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol 2016; 27, iii4–iii15. https://doi.org/10.1093/annonc/mdw301.

  30. Gao Q, Liang W-W, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao W-W, Reynolds SM, Wyczalkowski MA, Yao L, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23:227-238.e223. https://doi.org/10.1016/j.celrep.2018.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi J, Gu W, Zhao Y, Zhu J, Jiang G, Bao M, Shi J. Clinicopathological and prognostic significance of EML4-ALK rearrangement in patients with surgically resected lung adenocarcinoma: a propensity score matching study. Cancer Manag Res. 2020;12:589–98. https://doi.org/10.2147/CMAR.S229217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science (New York, N.Y.) 1995; 267, 316–317. https://doi.org/10.1126/science.267.5196.316-b.

  33. Zhang Y, Liu Z. STAT1 in cancer: friend or foe? Discov Med. 2017;24:19–29.

    PubMed  Google Scholar 

  34. Han M-L, Zhao Y-F, Tan C-H, Xiong Y-J, Wang W-J, Wu F, Fei Y, Wang L, Liang Z-Q. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol Sin. 2016;37:1606–22. https://doi.org/10.1038/aps.2016.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravindran Menon D, Luo Y, Arcaroli JJ, Liu S, KrishnanKutty LN, Osborne DG, Li Y, Samson JM, Bagby S, Tan A-C, et al. CDK1 Interacts with Sox2 and Promotes Tumor Initiation in Human Melanoma. Can Res. 2018;78:6561–74. https://doi.org/10.1158/0008-5472.can-18-0330.

    Article  CAS  Google Scholar 

  36. Aoude, L.G.; Pritchard, A.L.; Robles-Espinoza, C.D.; Wadt, K.; Harland, M.; Choi, J.; Gartside, M.; Quesada, V.; Johansson, P.; Palmer, J.M.; et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. JNCI 2014; https://doi.org/10.1093/jnci/dju408.

  37. Wu X, Yu M, Zhang Z, Leng F, Ma Y, Xie N, Lu F. DDB2 regulates DNA replication through PCNA-independent degradation of CDT2. Cell Biosci. 2021;11:34. https://doi.org/10.1186/s13578-021-00540-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Workel HH, Lubbers JM, Arnold R, Prins TM, van der Vlies P, de Lange K, Bosse T, van Gool IC, Eggink FA, Wouters MCA, et al. A transcriptionally Distinct CXCL13 T-cell population is associated with B-cell recruitment and neoantigen load in human cancer. Cancer Immunol Res. 2019;7:784–96. https://doi.org/10.1158/2326-6066.cir-18-0517.

    Article  CAS  PubMed  Google Scholar 

  39. Vilgelm AE, Richmond A. Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy. Front Immunol 2019; 10. https://doi.org/10.3389/fimmu.2019.00333

  40. Takezawa K, Okamoto I, Nishio K, Jänne PA, Nakagawa K. Role of ERK-BIM and STAT3-Survivin Signaling Pathways in ALK Inhibitor-Induced Apoptosis in EML4-ALK–Positive Lung Cancer. Clin Cancer Res. 2011;17:2140–8. https://doi.org/10.1158/1078-0432.ccr-10-2798.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Saifullah gratefully acknowledges the scholarship from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan for economic assistance. We acknowledge professor Fujimoto lab, School of Materials Science, JAIST, Japan for their support in image acquisition of immunoblotting. We also acknowledge professor Takeshi Suzuki and assistant professor Akihiko Ishimura, Cancer Research Institute, Kanazawa University, Kanazawa, Japan for their help in apoptosis assay. We are thankful to Mr. Jiarui Li, School of Materials Science, JAIST for technical help in confocal microscopy.

Funding

This research was funded by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (Grant number: 21H02067).

Author information

Authors and Affiliations

Authors

Contributions

S performed all the experiments, integrated analysis, data interpretation, statistical analyses, and wrote the first draft of the manuscript. TT supervised, acquired funding, reviewed and edited the writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toshifumi Tsukahara.

Ethics declarations

Conflict of interest

The authors have declared no competing interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethics approval

No human and animal samples were used in this study. This study falls under the category of "Genetic engineering experiments". This research has been approved by the Life Science Committee, Japan Advanced Institute of Science and Technology (JAIST).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifullah, Tsukahara, T. Integrated analysis of ALK higher expression in human cancer and downregulation in LUAD using RNA molecular scissors. Clin Transl Oncol 24, 1785–1799 (2022). https://doi.org/10.1007/s12094-022-02835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02835-6

Keywords

Navigation