Skip to main content

Advertisement

Log in

Epidermal growth factor receptor tyrosine-kinase inhibitor treatment resistance in non-small cell lung cancer: biological basis and therapeutic strategies

  • Educational Series - Blue Series
  • Advances in Translational Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Lung cancer remains the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) represents 85 % of all lung cancer cases and it is classified into three major subtypes: adenocarcinoma, squamous cell carcinoma and large-cell carcinoma. In the past years, molecular-targeted therapies have been developed in order to improve response, survival and quality of life in patients with advanced NSCLC. Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine-kinase inhibitors (TKIs). However, virtually all patients with initial response relapse due to acquired resistance. Better understanding the biology of these tumors and mechanisms of EGFR TKIs resistance could shed some light on research of new therapeutic options in this setting. This review aims to emphasize on EGFR involved lung cancer pathway, primary and acquired mechanisms of TKIs resistance, and discuss agents currently used in clinical development in this emerging scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

SCLC:

Small cell lung carcinoma

EGFR:

Epidermal growth factor receptor

VEGF:

Vascular endothelial growth factor

TKI:

Tyrosine-kinase inhibitor

RTKs:

Tyrosine-kinase receptor family

PI3K:

Phosphatidylinositol 3-kinase

WT:

Wild-type

KRAS:

Kirsten rat sarcoma viral oncogene homolog

PTEN:

Phosphatase and tensin homologue

MET:

Mesenchymal–epithelial transition factor

EMT:

Epithelial to mesenchymal transition

RECIST:

Response Evaluation Criteria in Solid Tumors

WHO:

World Health Organization

References

  1. Gullick WJ, Downward J, Parker PJ, Whittle N, Kris R, Schlessinger J, et al. The structure and function of the epidermal growth factor receptor studied by using antisynthetic peptide antibodies. Proc R Soc Lond B Biol Sci. 1985;226(1242):127–34.

    Article  CAS  PubMed  Google Scholar 

  2. Lo HW. Nuclear mode of the EGFR signaling network: biology, prognostic value, and therapeutic implications. Discov Med. 2010;10(50):44–51.

    PubMed Central  PubMed  Google Scholar 

  3. Zaczek A, Brandt B, Bielawski KP. The diverse signaling of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol Histopathol. 2005;20(3):1005–15.

    CAS  PubMed  Google Scholar 

  4. Normanno N, Maiello MR, De Luca A. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): simple drugs with a complex mechanism of action? J Cell Physiol. 2003;194(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  5. Burris HA 3rd. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013. doi:10.1007/s00280-012-2043-3.

    PubMed Central  Google Scholar 

  6. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, et al. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget. 2012;3(9):954–87.

    PubMed Central  PubMed  Google Scholar 

  7. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, et al. Architecture and membrane interactions of the EGF receptor. Cell. 2013;152(3):557–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jiang J, Greulich H, Jänne PA, Sellers WR, Meyerson M, Griffin JD. Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res. 2005;65(19):8968–74.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget. 2010;1(7):497–514.

    PubMed Central  PubMed  Google Scholar 

  10. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009;218(3):460–6. doi:10.1002/jcp.21635.

    Article  CAS  PubMed  Google Scholar 

  12. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(Suppl 1):S24–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tiseo M, Bartolotti M, Gelsomino F, Bordi P. Emerging role of gefitinib in the treatment of non-small-cell lung cancer (NSCLC). Drug Des Devel Ther. 2010;4:81–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nguyen KS, Neal JW. First-line treatment of EGFR-mutant non-small-cell lung cancer: the role of erlotinib and other tyrosine kinase inhibitors. Biologics. 2012;6:337–45. doi:10.2147/BTT.S26558.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    Article  PubMed  Google Scholar 

  17. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366(9496):1527–37.

    Article  CAS  PubMed  Google Scholar 

  18. Chang A, Parikh P, Thongprasert S, Tan EH, Perng RP, Ganzon D, et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol. 2006;1(8):847–55.

    Article  PubMed  Google Scholar 

  19. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  20. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29(21):2866–74.

    Article  CAS  PubMed  Google Scholar 

  21. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  22. Soria JC, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38(5):416–30.

    Article  CAS  PubMed  Google Scholar 

  23. Otto C, Csanadi A, Fisch P, Werner M, Kayser G. Molecular modeling and description of a newly characterized activating mutation of the EGFR gene in non-small cell lung cancer. Diagn Pathol. 2012;22(7):146.

    Article  Google Scholar 

  24. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13(1):e23–31.

    Article  CAS  PubMed  Google Scholar 

  25. Gotoh N. Somatic mutations of the EGF receptor and their signal transducers affect the efficacy of EGF receptor-specific tyrosine kinase inhibitors. Int J Clin Exp Pathol. 2011;4(4):403–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Calvo E, Baselga J. Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol. 2006;24(14):2158–63.

    Article  CAS  PubMed  Google Scholar 

  27. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67.

    Article  CAS  PubMed  Google Scholar 

  28. Miyamae Y, Shimizu K, Hirato J, Araki T, Tanaka K, Ogawa H, et al. Significance of epidermal growth factor receptor gene mutations in squamous cell lung carcinoma. Oncol Rep. 2011;25(4):921–8.

    CAS  PubMed  Google Scholar 

  29. Park SH, Ha SY, Lee JI, Lee H, Sim H, Kim YS, et al. Epidermal growth factor receptor mutations and the clinical outcome in male smokers with squamous cell carcinoma of lung. J Korean Med Sci. 2009;24(3):448–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stella GM, Luisetti M, Inghilleri S, Cemmi F, Scabini R, Zorzetto M, et al. Targeting EGFR in non-small-cell lung cancer: lessons, experiences, strategies. Respir Med. 2012;106(2):173–83.

    Article  PubMed  Google Scholar 

  31. Pallis AG, Syrigos KN. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of NSCLC. Lung Cancer. 2013. doi:10.1016/j.lungcan.2012.12.025.

    PubMed  Google Scholar 

  32. Ou SH. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit Rev Oncol Hematol. 2012;83(3):407–21.

    Article  PubMed  Google Scholar 

  33. Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013. doi:10.1200/JCO.2012.43.3912.

    PubMed Central  Google Scholar 

  34. Wu W, O'Reilly MS, Langley RR, Tsan RZ, Baker CH, Bekele N, et al. Expression of epidermal growth factor/transforming growth factor alpha by human lung cancer determines their response to EGF receptor tyrosine kinase inhibition in the lungs of mice. Mol Cancer Ther. 2007;6(10):2652–63.

    Article  CAS  PubMed  Google Scholar 

  35. Gazdar AF, Minna JD. Deregulated EGFR signaling during lung cancer progression: mutations, amplicons and autocrine loops. Cancer Prev Res (Phila). 2008;1(3):156–60. doi:10.1158/1940-6207.

    Article  CAS  Google Scholar 

  36. Sequist LV, Heist RS, Shaw AT, Fidias P, Rosovsky R, Temel JS, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol. 2011;22(12):2616–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008;68(14):5524–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tsao MS, Aviel-Ronen S, Ding K, Lau D, Liu N, Sakurada A, et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol. 2007;25(33):5240.

    Article  PubMed  Google Scholar 

  40. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC, Liu N, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol. 2008;26(26):4268–75.

    Article  CAS  PubMed  Google Scholar 

  42. Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A. 2012;109(31):E2127–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ludovini V, Bianconi F, Pistola L, Chiari R, Minotti V, Colella R, et al. Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2011;6(4):707–15.

    Article  PubMed  Google Scholar 

  44. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, et al. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene. 2003;22(18):2812–22.

    Article  CAS  PubMed  Google Scholar 

  45. Wojtalla A, Arcaro A. Targeting phosphoinositide 3-kinase signaling in lung cancer. Crit Rev Oncol Hematol. 2011;80(2):278–90.

    Article  PubMed  Google Scholar 

  46. Bar J, Onn A. Overcoming molecular mechanisms of resistance to first-generation epidermal growth factor receptor tyrosine kinase inhibitors. Clin Lung Cancer. 2012;13(4):267–79.

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh G, Lian X, Kron SJ, Palecek SP. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors. BMC Cancer. 2012;20(12):95.

    Article  Google Scholar 

  48. Su KY, Chen HY, Li KC, Kuo ML, Yang JC, Chan WK, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 2012;30(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  49. Rosell R, Molina-Vila MA, Taron M, Bertran-Alamillo, Mayo C, Vergnenegre A, et al. EGFR compound mutants and survival on erlotinib in non-small cell lung cancer (NSCLC) patients (p) in the EURTAC study. J Clin Oncol. 2012 (suppl; abstr 7522).

  50. Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF, et al. Rebiobsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17(5):1169–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kosaka T, Yamaki E, Mogi A, Kuwano H. Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol. 2011;2011:165214. doi:10.1155/2011/165214.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Oxnard GR, Arcila ME, Sima CS, Riely GJ, Chmielecki J, Kris MG, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res. 2011;17(6):1616–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Rosell R, Molina MA, Costa C, Simonetti S, Gimenez-Capitan A, Beltran-Alamillo J. Pretreatment EGFR T790M mutation and BRCA-1 mRNA expression in erlotinib treated advanced non-small cell lung cancer patients with EGFR mutations. Clin Cancer Res. 2011;17(5):1160–8.

    Article  CAS  PubMed  Google Scholar 

  55. Politi K, Pao W. How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol. 2011;29(16):2273–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077–80 (discussion 3080).

    Article  CAS  PubMed  Google Scholar 

  57. Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4(4):444–7.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  59. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borrás AM, Gale CM, et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest. 2006;116(10):2695–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Suda K, Tomizawa K, Fujii M, Murakami H, Osada H, Maehara Y, et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol. 2011;6(7):1152–61.

    Article  PubMed  Google Scholar 

  62. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66(2):944–50.

    Article  CAS  PubMed  Google Scholar 

  63. Popat S, Wotherspoon A, Nutting CM, Gonzalez D, Nicholson AG, O’Brien M. Transformation to “high grade” neuroendocrine carcinoma as an acquired drug resistance mechanism in EGFR-mutant lung adenocarcinoma. Lung Cancer. 2013. doi:10.1016/j.lungcan.2012.12.019.

    Google Scholar 

  64. Hata A, Katakami N, Yoshioka H, Takeshita J, Tanaka K, Nanjo S, et al. Rebiopsy of non-small cell lung cancer patients with acquired resistance to EGFR-TKI: Comparison between T790M mutation-positive and -negative populations. J Clin Oncol. 2012 (suppl; abstr 7528).

  65. Kuyper J. Rebiopsy results in EGFR-mutated NSCLC patients with TKI resistance. http://www.esmo.org/Conferences/Past-Conferences/EMCTO-2013-Lung-Cancer/News/Findings-support-the-value-of-tumour-rebiopsy-in-NSCLC-patients.

  66. Shaw AT, Engelman JA. ALK in lung cancer: past, present and future. J Clin Oncol. 2013;. doi:10.1200/JCO.2012.44.5353.

    PubMed Central  Google Scholar 

  67. Rosell R, Massuti B, Costa C, Molina MA, Gimenez-Capitan A, Karachaliou N, et al. Concomitant actionable mutations and overall survival in EGFR mutant non small cell lung cancer patients included in the EURTAC trial: EGFR L858R, EFR T790M, TP53 R273H and EML4-ALK (v3). 37th ESMO congress. Abstract 929. 2012.

  68. Tanizaki J, Okamoto I, Okamoto K, Takezawa K, Kuwata K, Yamaguchi H, et al. MET tyrosine kinase inhibitor crizotinib (PF-02341066) shows differential antitumor effects in non-small cell lung cancer according to MET alterations. J Thorac Oncol. 2011;6(10):1624–31.

    Article  PubMed  Google Scholar 

  69. Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2012;2(10):922–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jackman D, Pao W, Riely JG, Engelman JA, Kris MK, Janne PA, et al. Clinical definition of acquired resistance to epidermal Growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. J Clin Oncol. 2010;28(2):357–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Nishino M, Cardarella S, Dahlberg SE, Jackman DM, Ramaiya NH, Hatabu H, et al. Radiographic assessment and therapeutic decisions at RECIST progression in EGFR mutant NSCLC treated with EGFR tyrosine kinase inhibitors. Lung Cancer. 2013;79(3):283–8.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Lee HY, Lee KS, Ahn MJ, Hwang HS, Lee JW, Park K, et al. New CT response criteria in non small cell lung cancer: proposal and application in EGFR tyrosine kinase inhibitor therapy. Lung Cancer. 2011;73(1):63–9.

    Article  PubMed  Google Scholar 

  73. Heuckmann JM, Rauh D, Thomas RK. Epidermal growth factor receptor (EGFR) signaling and covalent EGFR inhibition in lung cancer. J Clin Oncol. 2012;30(27):3417–20.

    Article  CAS  PubMed  Google Scholar 

  74. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27(34):4702–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. De Grève J, Teugels E, Geers C, Decoster L, Galdermans D, De Mey J, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012;76(1):123–7.

    Article  PubMed  Google Scholar 

  76. Yang JC, Schuler MH, Yamamoto N, O'Byrne KJ, Hirsch V, Mok T, et al. LUX-Lung 3: a randomized, open-label, phase III study of afatinib versus pemetrexed and cisplatin as first-line treatment for patients with advanced adenocarcinoma of the lung harboring EGFR-activating mutations. J Clin Oncol. 2012 (suppl; abstr LBA7500).

  77. Janjigian YY, Groen HJ, Horn L, Smit EF, Fu Y, Wang F, et al. Activity and tolerability of afatinib (BIBW 2992) and cetuximab in NSCLC patients with acquired resistance to erlotinib or gefitinib. J Clin Oncol. 2011 (suppl; abstr 7525).

  78. Ramalingam SS, Blackhall F, Krzakowski M, Barrios CH, Park K, Bover I, et al. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2012;30(27):3337–44.

    Article  CAS  PubMed  Google Scholar 

  79. Huang MH, Lee JH, Chang YJ, Tsai HH, Lin YL, Lin AM, et al. MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol Oncol. 2013;7(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  80. Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D, et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol. 2011;29(24):3307–15.

    Article  CAS  PubMed  Google Scholar 

  81. Scagliotti GV, Novello S, Schiller JH, Hirsh V, Sequist LV, Soria JC, et al. Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer. 2012;13(5):391–5.

    Article  CAS  PubMed  Google Scholar 

  82. GEN: Genetic Engineering and Biotechnology news (Internet). http://www.genengnews.com/gen-news-highlights/lack-of-efficacy-halts-pivotal-tivantinib-lung-cancer-trial/81247420. Accessed 19 Mar 2013.

  83. Spigel DR, Ervin TJ, Ramlau R, Daniel DB, Goldschmidt JH, Blumenschein GR, et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol. 2011 (suppl; abstr 7505).

  84. Spigel DR, Edelman MJ, Mok T, O′Byrne KJ, Paz-Ares L, Yu W, et al. The MetLUNG study: a randomized, double-blind, phase III study of onartuzumab (MetMAb) plus erlotinib versus placebo plus erlotinib in patients with advanced, MET-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2012 (suppl; abstr TPS7616).

  85. Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5(3):203–20.

    Article  CAS  PubMed  Google Scholar 

  86. ETOP 2-11 BELIEF. http://www.etop-eu.org/index.php?option=com_content&view=category&layout=blog&id=180&Itemid=220.

  87. Lee JS, Hirsh V, Park K, Qin S, Blajman CR, Perng RP, et al. Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol. 2012;30(10):1114–21.

    Article  CAS  PubMed  Google Scholar 

  88. Kato Y, Mascaux M, Wynes MW, Reyna Asuncion B, Tran C, Yoshida K et al. The role of IGF-1R in EGFR TKI resistance in NSCLC using IHC and AQUA technology. J Clin Oncol. 2011 (suppl; abstr 10556).

  89. Sano T, Takeuchi S, Nakagawa T, Ishikawa D, Nanjo S, Yamada T, et al. The novel phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor, BEZ235, circumvents erlotinib resistance of epidermal growth factor receptor mutant lung cancer cells triggered by hepatocyte growth factor. Int J Cancer. 2013. doi:10.1002/ijc.28034.

    Google Scholar 

  90. Koizumi H, Yamada T, Takeuchi S, Nakagawa T, Kita K, Nakamura T, et al. Hsp90 inhibition overcomes HGF-triggering resistance to EGFR-TKIs in EGFR-mutant lung cancer by decreasing client protein expression and angiogenesis. J Thorac Oncol. 2012;7(7):1078–85.

    Article  CAS  PubMed  Google Scholar 

  91. Grossi F, Rijavec E, Dal Bello MG, Defferrari C, Brianti A, Barletta G, et al. The administration of gefitinib in patients with advanced non-small-cell lung cancer after the failure of erlotinib. Cancer Chemother Pharmacol. 2012;69(6):1407–12.

    Article  CAS  PubMed  Google Scholar 

  92. Maruyama R, Wataya H, Seto T, Ichinose Y. Treatment after the failure of gefitinib in patients with advanced or recurrent non-small cell lung cancer. Anticancer Res. 2009;29(10):4217–21.

    CAS  PubMed  Google Scholar 

  93. Hata A, Katakami N, Yoshioka H, Fujita S, Kunimasa K, Nanjo S, et al. Erlotinib after gefitinib failure in relapsed non-small cell lung cancer: clinical benefit with optimal patient selection. Lung Cancer. 2011;74(2):268–73.

    Article  PubMed  Google Scholar 

  94. Kaira K, Naito T, Takahashi T, Ayabe E, Shimoyama R, Kaira R, et al. Pooled analysis of the reports of erlotinib after failure of gefitinib for non-small cell lung cancer. Lung Cancer. 2010;68(1):99–104.

    Article  PubMed  Google Scholar 

  95. Shukuya T, Takahashi T, Tamiya A, Ono A, Igawa S, Nakamura Y, et al. Gefitinib plus paclitaxel after failure of gefitinib in non-small cell lung cancer initially responding to gefitinib. Anticancer Res. 2009;29(7):2747–51.

    CAS  PubMed  Google Scholar 

  96. Hirsch V. Afatinib (BIBW 2992) development in non-small-cell lung cancer. Future Oncol. 2011;7(7):817–25. doi:10.2217/fon.11.62.

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Carrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera, S., Buque, A., Azkona, E. et al. Epidermal growth factor receptor tyrosine-kinase inhibitor treatment resistance in non-small cell lung cancer: biological basis and therapeutic strategies. Clin Transl Oncol 16, 339–350 (2014). https://doi.org/10.1007/s12094-013-1143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1143-9

Keywords

Navigation