Skip to main content

Advertisement

Log in

The role of EphA7 in different tumors

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Ephrin receptor A7 (EphA7) is a member of the Eph receptor family. It is widely involved in signal transduction between cells, regulates cell proliferation and differentiation, and participates in developing neural tubes and brain. In addition, EphA7 also has a dual role of tumor promoter and tumor suppressor. It can participate in cell proliferation, migration and apoptosis through various mechanisms, and affect tumor differentiation, staging and prognosis. EphA7 may be a potential diagnostic marker and tumor treatment target. This article reviews the effects of EphA7 on a variety of tumor biological processes and pathological characteristics, as well as specific effects and regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    PubMed  Google Scholar 

  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–91.

    PubMed Central  PubMed  Google Scholar 

  3. Wild CP. The global cancer burden: necessity is the mother of prevention. Nat Rev Cancer. 2019;19(3):123–4.

    CAS  PubMed  Google Scholar 

  4. Can G, Mushani T, Rajhi BHA, Brant JM. The global burden of cancer pain. Semin Oncol Nurs. 2019;35(3):315–21.

    PubMed  Google Scholar 

  5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Global Cancer Statistics, et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  6. Hachisuga T. Aging and uterine serous carcinoma. Histol Histopathol. 2018;33(11):1125–33.

    CAS  PubMed  Google Scholar 

  7. Lv M, Dong ZJ, Tong YX, Li T, Hei Y, Yang XJ, et al. Retrospective analysis of clinicopathological characteristics of lacrimal gland pleomorphic adenoma and mechanism of tumorigenesis by the imbalance between apoptosis and proliferation. Med Sci Monit. 2021;27:e929152.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Parveen A, Akash MS, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26(1):49–62.

    PubMed  Google Scholar 

  9. de Oliveira SA, Borges R, Dos Santos Rosa D, de Souza ACS, Seabra AB, Baino F, et al. Strategies for cancer treatment based on photonic nanomedicine. Materials. 2021. https://doi.org/10.3390/ma14061435.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Miller DR, Ingersoll MA, Teply BA, Lin MF. Targeting treatment options for castration-resistant prostate cancer. Am J Clin Exp Urol. 2021;9(1):101–20.

    PubMed Central  PubMed  Google Scholar 

  11. Wang X, Niu X, An N, Sun Y, Chen Z. Comparative efficacy and safety of immunotherapy alone and in combination with chemotherapy for advanced non-small cell lung cancer. Front oncol. 2021;11:611012.

    PubMed Central  PubMed  Google Scholar 

  12. Belete TM. The current status of gene therapy for the treatment of cancer. Biol Targets Ther. 2021;15:67–77.

    Google Scholar 

  13. Giorgio C, Zanotti I, Lodola A, Tognolini M. Ephrin or not? Six tough questions on Eph targeting. Expert Opin Ther Targets. 2020;24(5):403–15.

    CAS  PubMed  Google Scholar 

  14. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the Eph gene. Science. 1987;238(4834):1717–20.

    CAS  PubMed  Google Scholar 

  15. Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004;15(6):419–33.

    CAS  PubMed  Google Scholar 

  16. Ma X, Ma Z, Jiao X, Hejtmancik JF. Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways. Sci Rep. 2017;7(1):9992.

    PubMed Central  PubMed  Google Scholar 

  17. Poppe L, Rué L, Timmers M, Lenaerts A, Storm A, Callaerts-Vegh Z, et al. EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimer’s disease. Alz Res Ther. 2019;11(1):102.

    CAS  Google Scholar 

  18. Leonard CE, Baydyuk M, Stepler MA, Burton DA, Donoghue MJ. EphA7 isoforms differentially regulate cortical dendrite development. PLoS ONE. 2020;15(12):e0231561.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rudno-Rudzińska J, Kielan W, Frejlich E, Kotulski K, Hap W, Kurnol K, et al. A review on Eph/ephrin, angiogenesis and lymphangiogenesis in gastric, colorectal and pancreatic cancers. Chin J Cancer Res. 2017;29(4):303–12.

    PubMed Central  PubMed  Google Scholar 

  20. Giaginis C, Tsoukalas N, Bournakis E, Alexandrou P, Kavantzas N, Patsouris E, et al. Ephrin (Eph) receptor A1, A4, A5 and A7 expression in human non-small cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients’ survival. BMC Clin Pathol. 2014;14(1):8.

    PubMed Central  PubMed  Google Scholar 

  21. Cui Y, Wu BO, Flamini V, Evans BAJ, Zhou D, Jiang WG. Knockdown of EPHA1 Using CRISPR/CAS9 suppresses aggressive properties of ovarian cancer cells. Anticancer Res. 2017;37(8):4415–24.

    CAS  PubMed  Google Scholar 

  22. Okuyama T, Sakamoto R, Kumagai K, Nishizawa M, Kimura T, Sugie T, et al. EPHA2 antisense RNA modulates EPHA2 mRNA levels in basal-like/triple-negative breast cancer cells. Biochimie. 2020;179:169–80.

    CAS  PubMed  Google Scholar 

  23. Lu C, Shahzad MM, Wang H, Landen CN, Kim SW, Allen J, et al. EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther. 2008;7(7):1098–103.

    CAS  PubMed  Google Scholar 

  24. Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23(2):238–48.

    CAS  PubMed  Google Scholar 

  25. Zhang X. The expression profile and prognostic values of EPHA family members in breast cancer. Front Oncol. 2021;11:619949.

    PubMed Central  PubMed  Google Scholar 

  26. Zhou S, Wang L, Guo S, Zhang Z, Wang J. EphA4 protein promotes invasion in clear cell renal cell carcinomas. Int J Clin Exp Pathol. 2017;10(12):11737–42.

    PubMed Central  PubMed  Google Scholar 

  27. Zhang R, Liu J, Zhang W, Hua L, Qian LT, Zhou SB. EphA5 knockdown enhances the invasion and migration ability of esophageal squamous cell carcinoma via epithelial-mesenchymal transition through activating Wnt/β-catenin pathway. Cancer cell Int. 2020. https://doi.org/10.1186/s12935-020-1101-x.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhou D, Ren K, Wang J, Ren H, Yang W, Wang W, et al. Erythropoietin-producing hepatocellular A6 overexpression is a novel biomarker of poor prognosis in patients with breast cancer. Oncol Lett. 2018;15(4):5257–63.

    PubMed Central  PubMed  Google Scholar 

  29. Li S, Ma Y, Xie C, Wu Z, Kang Z, Fang Z, et al. EphA6 promotes angiogenesis and prostate cancer metastasis and is associated with human prostate cancer progression. Oncotarget. 2015;6(26):22587–97.

    PubMed Central  PubMed  Google Scholar 

  30. Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X. MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7. PLoS ONE. 2017;12(6):e0175553.

    PubMed Central  PubMed  Google Scholar 

  31. Bai YQ, Zhang JY, Bai CY, Xu XE, Wu JY, Chen B, et al. Low EphA7 expression correlated with lymph node metastasis and poor prognosis of patients with esophageal squamous cell carcinoma. Acta Histochem Cytochem. 2015;48(3):75–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang GH, Ni K, Gu C, Huang J, Chen J, Wang XD, et al. EphA8 inhibits cell apoptosis via AKT signaling and is associated with poor prognosis in breast cancer. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.8134.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wang Y, Zhou N, Li P, Wu H, Wang Q, Gao X, et al. EphA8 acts as an oncogene and contributes to poor prognosis in gastric cancer via regulation of ADAM10. J Cell Physiol. 2019;234(11):20408–19.

    CAS  PubMed  Google Scholar 

  34. Peng J, Zhang D. Coexpression of EphA10 and Gli3 promotes breast cancer cell proliferation, invasion and migration. J Investig Med. 2021;69(6):1215–21.

    PubMed Central  PubMed  Google Scholar 

  35. Shin WS, Park MK, Lee YH, Kim KW, Lee H, Lee ST. The catalytically defective receptor protein tyrosine kinase EphA10 promotes tumorigenesis in pancreatic cancer cells. Cancer Sci. 2020;111(9):3292–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Teng L, Nakada M, Furuyama N, Sabit H, Furuta T, Hayashi Y, et al. Ligand-dependent EphB1 signaling suppresses glioma invasion and correlates with patient survival. Neuro Oncol. 2013;15(12):1710–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Bhatia S, Baig NA, Timofeeva O, Pasquale EB, Hirsch K, MacDonald TJ, et al. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization. Oncotarget. 2015;6(11):8929–46.

    PubMed Central  PubMed  Google Scholar 

  38. Leung HW, Leung CON, Lau EY, Chung KPS, Mok EH, Lei MML, et al. EPHB2 activates β-Catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res. 2021;81(12):3229–40.

    CAS  PubMed  Google Scholar 

  39. Yin J, Li Z, Ye L, Birkin E, Li L, Xu R, et al. EphB2 represents an independent prognostic marker in patients with gastric cancer and promotes tumour cell aggressiveness. J Cancer. 2020;11(10):2778–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhao K, He J, Wang YF, Jin SD, Fan Y, Fang N, et al. EZH2-mediated epigenetic suppression of EphB3 inhibits gastric cancer proliferation and metastasis by affecting E-cadherin and vimentin expression. Gene. 2019;686:118–24.

    CAS  PubMed  Google Scholar 

  41. Li JJ, Sun ZJ, Yuan YM, Yin FF, Bian YG, Long LY, et al. EphB3 stimulates cell migration and metastasis in a kinase-dependent manner through Vav2-Rho GTPase axis in papillary thyroid cancer. J Biol Chem. 2017;292(3):1112–21.

    CAS  PubMed  Google Scholar 

  42. Ding J, Yao Y, Huang G, Wang X, Yi J, Zhang N, et al. Targeting the EphB4 receptor tyrosine kinase sensitizes HER2-positive breast cancer cells to Lapatinib. Cancer Lett. 2020;475:53–64.

    CAS  PubMed  Google Scholar 

  43. Ferguson BD, Liu R, Rolle CE, Tan YH, Krasnoperov V, Kanteti R, et al. The EphB4 receptor tyrosine kinase promotes lung cancer growth: a potential novel therapeutic target. PLoS ONE. 2013;8(7):e67668.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Liu J, Xu B, Xu G, Zhang X, Yang X, Wang J. Reduced EphB6 protein in gastric carcinoma and associated lymph nodes suggests EphB6 as a gastric tumor and metastasis inhibitor. Cancer Biomark. 2017;19(3):241–8.

    CAS  PubMed  Google Scholar 

  45. Dong Y, Pan J, Ni Y, Huang X, Chen X, Wang J. High expression of EphB6 protein in tongue squamous cell carcinoma is associated with a poor outcome. Int J Clin Exp Pathol. 2015;8(9):11428–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Holmberg J, Clarke DL, Frisén J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature. 2000;408(6809):203–6.

    CAS  PubMed  Google Scholar 

  47. Tu Y, Cai Q, Zhu X, Xu M. Down-regulation of HCP5 inhibits cell proliferation, migration, and invasion through regulating EPHA7 by competitively binding miR-101 in osteosarcoma. Braz J Med Biol Res. 2021;54(2):e9161.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE. 2011;6(9):e24426.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lucero M, Thind J, Sandoval J, Senaati S, Jimenez B, Kandpal RP. Stem-like cells from invasive breast carcinoma cell line MDA-MB-231 express a distinct set of Eph receptors and ephrin ligands. Cancer Genomics Proteomics. 2020;17(6):729–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu M, Zhou K, Cao Y. MicroRNA-944 affects cell growth by targeting EPHA7 in non-small cell lung cancer. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17101493.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Li R, Sun Y, Jiang A, Wu Y, Li C, Jin M, et al. Knockdown of ephrin receptor A7 suppresses the proliferation and metastasis of A549 human lung cancer cells. Mol Med Rep. 2016;13(4):3190–6.

    CAS  PubMed  Google Scholar 

  52. Liu DC, Yang ZL. MTDH and EphA7 are markers for metastasis and poor prognosis of gallbladder adenocarcinoma. Diagn Cytopathol. 2013;41(3):199–205.

    CAS  PubMed  Google Scholar 

  53. Zhang SJ, Zhang G, Zhao YF, Wu Y, Li J, Chai YX. Expression of EphA7 protein in primary hepatocellular carcinoma and its clinical significance. Zhonghua wai ke za zhi [Chin J Surg]. 2010;48(1):53–6.

    Google Scholar 

  54. Li S, Wu Z, Ma P, Xu Y, Chen Y, Wang H, et al. Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression. Cell Death Dis. 2017;8(10):e3122.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Guan M, Xu C, Zhang F, Ye C. Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features. Int J Cancer. 2009;124(1):88–94.

    CAS  PubMed  Google Scholar 

  56. Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M, et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell. 2011;147(3):554–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. López-Nieva P, Vaquero C, Fernández-Navarro P, González-Sánchez L, Villa-Morales M, Santos J, et al. EPHA7, a new target gene for 6q deletion in T-cell lymphoblastic lymphomas. Carcinogenesis. 2012;33(2):452–8.

    PubMed  Google Scholar 

  58. Shaker OG, Ayeldeen G, Abdelhamid AM. Circulating microRNA-944 and its target gene EPHA7 as a potential biomarker for colorectal cancer. Arch Physiol Biochem. 2020. https://doi.org/10.1080/13813455.2020.1762658.

    Article  PubMed  Google Scholar 

  59. Üçüncü M, Serilmez M, Sarı M, Bademler S, Karabulut S. The diagnostic significance of PDGF, EphA7, CCR5, and CCL5 levels in colorectal cancer. Biomolecules. 2019. https://doi.org/10.3390/biom9090464.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T, et al. Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis. 2019;10(7):514.

    PubMed Central  PubMed  Google Scholar 

  61. Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW. Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer. 2012;48(5):753–62.

    CAS  PubMed  Google Scholar 

  62. Xiang C, Lv Y, Wei Y, Wei J, Miao S, Mao X, et al. Effect of EphA7 silencing on proliferation, invasion and apoptosis in human laryngeal cancer cell lines hep-2 and AMC-HN-8. Cell Physiol Biochem. 2015;36(2):435–45.

    CAS  PubMed  Google Scholar 

  63. Liu HY, Chang J, Li GD, Zhang ZH, Tian J, Mu YS. MicroRNA-448/EPHA7 axis regulates cell proliferation, invasion and migration via regulation of PI3K/AKT signaling pathway and epithelial-to-mesenchymal transition in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2020;24(11):6139–49.

    PubMed  Google Scholar 

  64. Guo Y, Shi W, Fang R. miR-18a-5p promotes melanoma cell proliferation and inhibits apoptosis and autophagy by targeting EPHA7 signaling. Mol Med Rep. 2021;23(1):1.

    PubMed  Google Scholar 

  65. Sun Y, Xu C, Wu Q, Zhang L, Wang P. Long noncoding RNA KCNQ1OT1 promotes proliferation, migration, and invasion in maxillary sinus squamous cell carcinoma by regulating miR-204/EphA7 axis. J Cell Biochem. 2020;121(4):2962–9.

    CAS  PubMed  Google Scholar 

  66. Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, Cosford ND, et al. Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem. 2008;283(43):29461–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Castelli R, Tognolini M, Vacondio F, Incerti M, Pala D, Callegari D, et al. Δ(5)-Cholenoyl-amino acids as selective and orally available antagonists of the Eph-ephrin system. Eur J Med Chem. 2015;103:312–24.

    CAS  PubMed  Google Scholar 

  68. Kathawala RJ, Wei L, Anreddy N, Chen K, Patel A, Alqahtani S, et al. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study. Oncotarget. 2015;6(1):510–21.

    PubMed  Google Scholar 

  69. Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs. 2020;29(6):567–82.

    CAS  PubMed  Google Scholar 

  70. Nagano K, Maeda Y, Kanasaki S, Watanabe T, Yamashita T, Inoue M, et al. Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. J Control Release. 2014;189:72–9.

    CAS  PubMed  Google Scholar 

  71. Ansuini H, Meola A, Gunes Z, Paradisi V, Pezzanera M, Acali S, et al. Anti-EphA2 antibodies with distinct in vitro properties have equal in vivo efficacy in pancreatic cancer. J Oncol. 2009;2009:951917.

    PubMed  Google Scholar 

  72. Duggineni S, Mitra S, Lamberto I, Han X, Xu Y, An J, et al. Design and synthesis of potent bivalent peptide agonists targeting the EphA2 receptor. ACS Med Chem Lett. 2013;4(3):344–8.

    CAS  PubMed Central  Google Scholar 

  73. Chrencik JE, Brooun A, Recht MI, Nicola G, Davis LK, Abagyan R, et al. Three-dimensional structure of the EphB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition. J Biol Chem. 2007;282(50):36505–13.

    CAS  PubMed  Google Scholar 

  74. Zhang Z, Wu HX, Lin WH, Wang ZX, Yang LP, Zeng ZL, et al. EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers. BMC Med. 2021;19(1):26.

    PubMed Central  PubMed  Google Scholar 

  75. Chakraborty S, Varma AK. Crystal structure of clinically reported mutations Gly656Arg, Gly656Glu and Asp751His identified in the kinase domain of EphA7. Biochem Biophys Res Commun. 2021;568:62–7.

    CAS  PubMed  Google Scholar 

  76. Yang X, Xu X, Zhu H, Wang M, Wang D. Organoid research in digestive system tumors. Oncol Lett. 2021;21(4):308.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.

    PubMed  Google Scholar 

  78. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    PubMed  Google Scholar 

  79. Giaginis C, Tsourouflis G, Zizi-Serbetzoglou A, Kouraklis G, Chatzopoulou E, Dimakopoulou K, et al. Clinical significance of ephrin (eph)-A1, -A2, -a4, -a5 and -a7 receptors in pancreatic ductal adenocarcinoma. Pathol Oncol Res POR. 2010;16(2):267–76.

    CAS  PubMed  Google Scholar 

  80. Chalikonda G, Lee H, Sheik A, Huh YS. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol Cell Biochem. 2021. https://doi.org/10.1007/s11010-021-04156-8.

    Article  PubMed  Google Scholar 

  81. Lv J, Wang J, Shang X, Liu F, Guo S. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. 2020. Biosci Rep. https://doi.org/10.1042/BSR20201482.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Wang J, Kataoka H, Suzuki M, Sato N, Nakamura R, Tao H, et al. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene. 2005;24(36):5637–47.

    CAS  PubMed  Google Scholar 

  83. Zhang B, Min S, Guo Q, Huang Y, Guo Y, Liang X, et al. 7SK acts as an anti-tumor factor in tongue squamous cell carcinoma. Front Genet. 2021;12:642969.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Liao Y, Wang F, Zhang Y, Cai H, Song F, Hou J. Silencing SHMT2 inhibits the progression of tongue squamous cell carcinoma through cell cycle regulation. Cancer Cell Int. 2021;21(1):220.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. van Dijk BA, Brands MT, Geurts SM, Merkx MA, Roodenburg JL. Trends in oral cavity cancer incidence, mortality, survival and treatment in the Netherlands. Int J Cancer. 2016;139(3):574–83.

    PubMed  Google Scholar 

  86. Li D, Xiang B, Ying XX, Ying XX, Dong H. Correlation analysis of EphA7 expression with clinico-pathological parameters and prognosis in tongue squamous cell carcinoma. Shanghai J Stomatol. 2014;23(5):575–9.

    Google Scholar 

  87. Theocharis S, Klijanienko J, Giaginis C, Alexandrou P, Patsouris E, Sastre-Garau X. Ephrin receptor (Eph) -A1, -A2, -A4 and -A7 expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. Pathol Oncol Res POR. 2014;20(2):277–84.

    CAS  PubMed  Google Scholar 

  88. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5(12):1749–68.

    PubMed Central  PubMed  Google Scholar 

  89. Wang G, Li Q, Li C, Duan G, Sang H, Dong H, et al. Knockdown of PNO1 inhibits esophageal cancer progression. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.8036.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Tan X, Ren S, Fu MZ, Ren S, Yang C, Wu X, et al. microRNA-196b promotes esophageal squamous cell carcinogenesis and chemoradioresistance by inhibiting EPHA7, thereby restoring EPHA2 activity. Am J Cancer Res. 2021;11(7):3594–610.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48.

    CAS  PubMed  Google Scholar 

  92. Chen X, Sun X, Li X, Xu L, Yu W. LncRNA-HEIH is a novel diagnostic and predictive biomarker in gastric cancer. Genet Test Mol Biomarkers. 2021;25(4):284–92.

    CAS  PubMed  Google Scholar 

  93. Wang J, Li G, Ma H, Bao Y, Wang X, Zhou H, et al. Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol. 2007;38(11):1649–56.

    CAS  PubMed  Google Scholar 

  94. Yamada T, Yoshii T, Yasuda H, Okawa A, Sotome S. Dexamethasone regulates EphA5, a potential inhibitory factor with osteogenic capability of human bone marrow stromal cells. Stem Cells Int. 2016;2016:1301608.

    PubMed Central  PubMed  Google Scholar 

  95. Liu Z, Yan C, Xiao Y, Zhang W, Wang L, Li Q, et al. Expression and inhibitory effects of p53-upregulated modulator of apoptosis in gallbladder carcinoma. Oncol Lett. 2021;21(3):234.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Zhou J, Nie W, Yuan J, Zhang Z, Mi L, Wang C, et al. GSG2 knockdown suppresses cholangiocarcinoma progression by regulating cell proliferation, apoptosis and migration. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.8042.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Li Q, Zhang Q, Cheng X, Weng X, Chen M, Hu X, et al. Next-generation sequencing characterizes the landscape of somatic mutations and pathways in metastatic bile tract carcinoma. J Oncol. 2020;2020:3275315.

    PubMed Central  PubMed  Google Scholar 

  98. Han R, Yang H, Lu L, Lin L. Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Sci Rep. 2021;11(1):8626.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Wang Y, Gao R, Li J, Tang S, Li S, Tong Q, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization. Int J Nanomed. 2021;16:2803–18.

    Google Scholar 

  100. Chen YH, Huang YC, Yang SF, Yen HH, Tsai HD, Hsieh MC, et al. Pitavastatin and metformin synergistically activate apoptosis and autophagy in pancreatic cancer cells. Environ Toxicol. 2021. https://doi.org/10.1002/tox.23146.

    Article  PubMed  Google Scholar 

  101. Jang HJ, Yang JH, Hong E, Jo E, Lee S, Lee S, et al. Chelidonine induces apoptosis via GADD45a-p53 regulation in human pancreatic cancer cells. Integr Cancer Ther. 2021. https://doi.org/10.1177/15347354211006191.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Xu L, Yang M, Zhao T, Jin H, Xu Z, Li M, et al. The polymorphism of CYP2E1 Rsa I/Pst I gene and susceptibility to respiratory system cancer: a systematic review and meta-analysis of 34 studies. Medicine (Baltimore). 2014;93(27):e178.

    CAS  Google Scholar 

  103. Hou W, Zhou X, Yi C, Zhu H. Immune check point inhibitors and immune-related adverse events in small cell lung cancer. Front Oncol. 2021;11:604227.

    PubMed Central  PubMed  Google Scholar 

  104. Peifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Dawson DW, Hong JS, Shen RR, French SW, Troke JJ, Wu YZ, et al. Global DNA methylation profiling reveals silencing of a secreted form of Epha7 in mouse and human germinal center B-cell lymphomas. Oncogene. 2007;26(29):4243–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Tsuboi M, Mori H, Bunai T, Kageyama S, Suzuki M, Okudela K, et al. Secreted form of EphA7 in lung cancer. Int J Oncol. 2010;36(3):635–40.

    CAS  PubMed  Google Scholar 

  107. Huang DN, Liu HW, Li ZD. Expression of lncRNA-ATB in laryngeal carcinoma and its relationship with prognosis. Eur Rev Med Pharmacol Sci. 2020;24(21):11148–53.

    PubMed  Google Scholar 

  108. Albakova Z, Mangasarova Y, Sapozhnikov A. Heat shock proteins in lymphoma immunotherapy. Front Immunol. 2021;12:660085.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Jamil A, Mukkamalla SKR. Lymphoma. I: StatPearls. Treasure Island: StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.

    Google Scholar 

  110. Nastoupil LJ. When to use targeted therapy for the treatment of follicular lymphoma. Curr Hematol Malig Rep. 2021;16(1):45–51.

    PubMed  Google Scholar 

  111. Kaseb H, Tariq MA, Gupta G. Lymphoblastic lymphoma. I: StatPearls. Treasure Island: StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.

    Google Scholar 

  112. Burkhardt B, Hermiston ML. Lymphoblastic lymphoma in children and adolescents: review of current challenges and future opportunities. Br J Haematol. 2019;185(6):1158–70.

    PubMed  Google Scholar 

  113. Ostadrahimi S, Fayaz S, Parvizhamidi M, Abedi-Valugerdi M, Hassan M, Kadivar M, et al. Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines. Oncol Lett. 2018;15(5):8157–64.

    PubMed Central  PubMed  Google Scholar 

  114. Rachner TD, Kasimir-Bauer S, Goebel A, Erdmann K, Hoffmann O, Rauner M, et al. Soluble Neuropilin-1 is an independent marker of poor prognosis in early breast cancer. J Cancer Res Clin Oncol. 2021. https://doi.org/10.1007/s00432-021-03635-1.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Manso L, Mourón S, Tress M, Gómez-López G, Morente M, Ciruelos E, et al. Analysis of paired primary-metastatic hormone-receptor positive breast tumors (HRPBC) uncovers potential novel drivers of hormonal resistance. PLoS ONE. 2016;11(5):e0155840.

    PubMed Central  PubMed  Google Scholar 

  116. Rahimi S. Squamous cell carcinoma of skin: a brief review. Clin Ter. 2013;164(2):143–7.

    CAS  PubMed  Google Scholar 

  117. Ombredane AS, de Andrade LR, Bonadio RS, Pinheiro WO, de Azevedo RB, Joanitti GA. Melittin sensitizes skin squamous carcinoma cells to 5-fluorouracil by affecting cell proliferation and survival. Exp Dermatol. 2021. https://doi.org/10.1111/exd.14289.

    Article  PubMed  Google Scholar 

  118. Anderson AN, McClanahan D, Jacobs J, Jeng S, Vigoda M, Blucher AS, et al. Functional genomic analysis identifies drug targetable pathways in invasive and metastatic cutaneous squamous cell carcinoma. Cold Spring Harb Mol Case Stud. 2020. https://doi.org/10.1101/mcs.a005439.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Gao G, Yao Z, Shen J, Liu Y. Identification of key miRNAs in the treatment of dabrafenib-resistant melanoma. Biomed Res Int. 2021;2021:5524486.

    PubMed Central  PubMed  Google Scholar 

  120. Gao C, Gao J, Zeng G, Yan H, Zheng J, Guo W. MicroRNA-629–5p promotes osteosarcoma proliferation and migration by targeting caveolin 1. Braz J Med Biol Res. 2021;54(6):e10474.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Wang Y, Liu N, Li MY, Du MF. Long non-coding RNA ZEB2-AS1 regulates osteosarcoma progression by acting as a molecular sponge of miR-107 to modulate SALL4 expression. Am J Transl Res. 2021;13(3):1140–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Zheng L, Wang J, Wei S, Zhao SX, Yuan WH, Zhou HY. Expression of EphA7 in osteosarcoma and its effect on proliferation, migration and apoptosis of osteosarcoma MG-63 cells. Chin J Cancer. 2019;29(3):171–7.

    Google Scholar 

  123. Zhao P, Li T, Wang Y, Wang Y, Gu Q, Li Z. LncRNA MYCNOS promotes glioblastoma cell proliferation by regulating miR-216b/FOXM1 axis. Metab Brain Dis. 2021. https://doi.org/10.1007/s11011-021-00729-0.

    Article  PubMed  Google Scholar 

  124. Alexander BM, Cloughesy TF. Adult Glioblastoma. J Clin Oncol. 2017;35(21):2402–9.

    CAS  PubMed  Google Scholar 

  125. Wang LF, Fokas E, Juricko J, You A, Rose F, Pagenstecher A, et al. Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. BMC Cancer. 2008. https://doi.org/10.1186/1471-2407-8-79.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Lou X, Cai Y, Zheng H, Zhang Y. MicroRNA-146b-5p/EPHA7 axis regulates cell invasion, metastasis, proliferation, and temozolomide-induced chemoresistance via regulation of IRAK4/TRAF6/NF-κB signaling pathway in aggressive pituitary adenoma. Histol Histopathol. 2021. https://doi.org/10.14670/HH-18-391.

    Article  PubMed  Google Scholar 

  127. Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, et al. Emerging role of non-coding RNA in health and disease. Metab Brain Dis. 2021. https://doi.org/10.1007/s11011-021-00739-y.

    Article  PubMed Central  PubMed  Google Scholar 

  128. de Gonzalo-Calvo D, Thum T. Circulating non-coding RNAs as biomarkers to predict and monitor the response to exercise: chances and hurdles. Eur Heart J. 2018;39(38):3552.

    CAS  PubMed  Google Scholar 

  129. Romano G, Saviana M, Le P, Li H, Micalo L, Nigita G, et al. Non-coding RNA editing in cancer pathogenesis. Cancers. 2020. https://doi.org/10.3390/cancers12071845.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Du T, Gao Q, Zhao Y, Gao J, Li J, Wang L, et al. Long non-coding RNA LINC02474 affects metastasis and apoptosis of colorectal cancer by inhibiting the expression of GZMB. Front Oncol. 2021;11:651796.

    PubMed Central  PubMed  Google Scholar 

  131. Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol. 2021;12:628690.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. 2021. https://doi.org/10.1002/bab.2104.

    Article  PubMed  Google Scholar 

  133. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–32.

    CAS  PubMed  Google Scholar 

  134. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    CAS  PubMed  Google Scholar 

  135. Mendes RD, Canté-Barrett K, Pieters R, Meijerink JP. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica. 2016;101(9):1010–7.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lanzhou University and the second hospital of Lanzhou University for their support to our work.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

YCH, RHZ, DCY and XDG were responsible for review of the literature. XYC wrote the manuscript. XYC drew the figures. DCY, HYZ, MQL, TWG, XBZ and KZ designed the study and contributed to the valuable discussion and revision of the manuscript. All authors read and approved the final manuscript. XYC was the first author of this article, XYC and DCY contributed equally to this work.

Corresponding author

Correspondence to Haiyu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yu, D., Zhou, H. et al. The role of EphA7 in different tumors. Clin Transl Oncol 24, 1274–1289 (2022). https://doi.org/10.1007/s12094-022-02783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02783-1

Keywords

Navigation