Skip to main content

Advertisement

Log in

PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Poly-(ADP-Ribose)-Polymerase inhibitors (PARPi) were reported as radiosensitizers in non-small cell lung cancer (NSCLC) with wide-type epidermal growth factor receptor (EGFR), but the effects of radiation combined with PARPi were not investigated in EGFR-mutated NSCLC. Moreover, the underlying mechanisms were not well examined. This study aimed to study the efficacy of radiation combined with niraparib in EGFR-mutated NSCLC and explore their influence on the immune system.

Methods

Clone formation and apoptosis assay were conducted to explore the effects of niraparib and radiation. Immunofluorescence was conducted to detect the double-strand DNA breaks. Real-time PCR and immunoblotting were employed to evaluate the activation of STING/TBK1/TRF3 pathway and the expression levels of interferon β, CCL5 and CXCL10. Immunocompetent mice model bearing with subcutaneous Lewis lung cancer was established to confirm the results in vivo.

Results

Niraparib and radiation were synergistic to inhibit tumor both in vitro and in vivo. Radiation plus niraparib could activate anti-tumor immunity, which appeared as increased CD8+ T lymphocytes and activated STING/TBK1/IRF3 pathway.

Conclusion

PARPi not only as a radiosensitizer inhibited EGFR-mutated NSCLC tumor growth, but also cooperated with radiation to promote anti-tumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

NSCLC:

Non-small cell lung cancer

PARPi:

Poly-(ADP-Ribose)-Polymerase inhibitors

RT:

Radiotherapy

EGFR:

Epidermal growth factor receptor

ds-DNA:

Double strand DNA

ss-DNA:

Single strand DNA

LLC:

Lung Lewis carcinoma

ICBs:

Immune checkpoint blockades

IFN β:

Interferon β

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J Clin. 2020. https://doi.org/10.3322/caac.21590.

    Article  Google Scholar 

  2. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  3. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62. https://doi.org/10.1097/JTO.0000000000000033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moschini I, Dell’Anna C, Losardo PL, Bordi P, D’Abbiero N, Tiseo M. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors. Future Oncol. 2015;11(16):2329–42. https://doi.org/10.2217/fon.15.156.

    Article  CAS  PubMed  Google Scholar 

  5. Brown S, Banfill K, Aznar MC, Whitehurst P, Finn CF. The evolving role of radiotherapy in non-small cell lung cancer. Br J Radiol. 2019;92(1104):20190524. https://doi.org/10.1259/bjr.20190524.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang JS, Wang HJ, Qian HL. Biological effects of radiation on cancer cells. Military Med Res. 2018;5(04):76–86. https://doi.org/10.1186/s40779-018-0167-4.

    Article  Google Scholar 

  7. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. 2018;10:175883401774257. https://doi.org/10.1177/1758834017742575.

    Article  CAS  Google Scholar 

  8. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015;16(13):e498–509. https://doi.org/10.1016/s1470-2045(15)00007-8.

    Article  PubMed  Google Scholar 

  9. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9. https://doi.org/10.4049/jimmunol.180.5.3132.

    Article  CAS  PubMed  Google Scholar 

  10. Qiao M, Jiang T, Ren S, Zhou C. Combination strategies on the basis of immune checkpoint inhibitors in non-small-cell lung cancer: where do we stand? Clin Lung Cancer. 2018;19(1):1–11. https://doi.org/10.1016/j.cllc.2017.06.005.

    Article  CAS  PubMed  Google Scholar 

  11. Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-Ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015;33(12):1397–406. https://doi.org/10.1200/JCO.2014.58.8848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene. 2015;34(26):3349–56. https://doi.org/10.1038/onc.2014.295.

    Article  CAS  PubMed  Google Scholar 

  13. Saintigny Y, Delacôte F, Varès G, Petitot F, Lambert S, Averbeck D, et al. Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J. 2001;9:154–62. https://doi.org/10.1097/JTO.0000000000000033.

    Article  CAS  Google Scholar 

  14. Karen R, Erin H. dna damage repair and the emerging role of poly(ADP-ribose) polymerase inhibition in cancer therapeutics. Clin Ther. 2016;38:1577–88. https://doi.org/10.1016/j.clinthera.2016.06.006.

    Article  CAS  Google Scholar 

  15. Lesueur P, Chevalier F, Austry JB, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105–24. https://doi.org/10.18632/oncotarget.19079.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Sun K, Xiao Y, Feng B, Mikule K, Ma X, et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep. 2019;9(1):1853. https://doi.org/10.1038/s41598-019-38534-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chabanon RM, Muirhead G, Krastev DB, Adam J, Morel D, Garrido M, et al. PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J Clin Invest. 2019;129(3):1211–28. https://doi.org/10.1172/JCI123319.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davalli P, Marverti G, Lauriola A, D’Arca D. Targeting oxidatively induced dna damage response in cancer: opportunities for novel cancer therapies. Oxid Med Cell Longev. 2018;2018:2389523. https://doi.org/10.1155/2018/2389523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bridges KA, Toniatti C, Buser CA, Liu H, Buchholz TA, Meyn RE. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells. Oncotarget. 2014;5(13):5076–86. https://doi.org/10.18632/oncotarget.2083.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108(3):362–9. https://doi.org/10.1016/j.radonc.2013.06.013.

    Article  CAS  PubMed  Google Scholar 

  21. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618. https://doi.org/10.1038/ncomms15618.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. ence Signaling. 2012;5(214):ra20. https://doi.org/10.1126/scisignal.2002521.

    Article  Google Scholar 

  23. Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2012;339:786–91. https://doi.org/10.1126/science.1232458.

    Article  CAS  PubMed  Google Scholar 

  24. Murooka TT, Rahbar R, Platanias LC, Fish EN. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood. 2008;111(10):4892–901. https://doi.org/10.1182/blood-2007-11-125039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13(3):272–80. https://doi.org/10.1016/j.autrev.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  26. Müller M, Carter S, Hofer MJ, Campbell IL. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathol Appl Neurobiol. 2010;36(5):368–87. https://doi.org/10.1111/j.1365-2990.2010.01089.x.

    Article  CAS  PubMed  Google Scholar 

  27. Jennifer ML, Angela G, Susana B. The current status of PARP inhibitors in ovarian cancer. Tumori. 2016;102(5):433. https://doi.org/10.1038/s41598-019-38534-6.

    Article  CAS  Google Scholar 

  28. Kong FMS, Zhao J, Wang J, Faivre-Finn C. Radiation dose effect in locally advanced non-small cell lung cancer. J Thoracic Dis. 2014;6(4):336–47. https://doi.org/10.5301/tj.5000558.

    Article  Google Scholar 

  29. Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother. 2014;63(3):259–71. https://doi.org/10.1007/s00262-013-1506-7.

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Liu X, Zeng Z, Li J, Xie C. Immunomodulation of NK cells by ionizing radiation. Front Oncol. 2020;10:874. https://doi.org/10.3389/fonc.2020.00874.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ji D, Song C, Li Y, Xia J, Wu Y, Jia J, et al. Combination of radiotherapy and suppression of Tregs enhances abscopal antitumor effect and inhibits metastasis in rectal cancer. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000826.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oweida AJ, Laurel D, Andy P, David B, Shilpa B, Adam M, et al. STAT3 modulation of regulatory T cells in response to radiation therapy in head and neck cancer. Jnci J National Cancer Inst. 2019. https://doi.org/10.1093/jnci/djz036.

    Article  Google Scholar 

  33. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Can Res. 2013;73(9):2782–94. https://doi.org/10.1158/0008-5472.CAN-12-3981.

    Article  CAS  Google Scholar 

  34. Ostrand-Rosenberg S, Horn LA, Ciavattone NG. Radiotherapy both promotes and inhibits myeloid-derived suppressor cell function: novel strategies for preventing the tumor-protective effects of radiotherapy. Front Oncol. 2007. https://doi.org/10.3389/fonc.2019.00215.

    Article  Google Scholar 

  35. Rahal OM, Wolfe AR, Mandal PK, Larson R, Tin S, Jimenez C, et al. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 2018;100(4):1034. https://doi.org/10.1016/j.ijrobp.2017.11.043.

    Article  CAS  PubMed  Google Scholar 

  36. Seifert L, Werba G, Tiwari S, Ly NNG, Nguy S, Alothman S, et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.070.

    Article  PubMed  Google Scholar 

  37. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153. https://doi.org/10.3389/fonc.2012.00153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–10. https://doi.org/10.1016/j.ijrobp.2011.09.049.

    Article  CAS  PubMed  Google Scholar 

  39. Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA, et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res. 2015. https://doi.org/10.1158/2326-6066.CIR-15-0044.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin Cancer Res An Off J Am Assoc Cancer Res. 2015. https://doi.org/10.1158/1078-0432.CCR-15-1362.

    Article  Google Scholar 

  41. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 2007. https://doi.org/10.1158/1078-0432.Ccr-06-2872.

    Article  PubMed  Google Scholar 

  42. Wang L, Mason KA, Ang KK, Buchholz T, Valdecanas D, Mathur A, et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs. 2012. https://doi.org/10.1007/s10637-011-9770-x.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hastak K, Bhutra S, Parry R, Ford JM. Poly (ADP-ribose) polymerase inhibitor, an effective radiosensitizer in lung and pancreatic cancers. Oncotarget. 2017;8(16):26344–55. https://doi.org/10.18632/oncotarget.15464.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Keam S, Gill S, Ebert MA, Nowak AK, Cook AM. Enhancing the efficacy of immunotherapy using radiotherapy. Clin Transl Immunol. 2020;9:e1169. https://doi.org/10.1002/cti2.1169.

    Article  Google Scholar 

  45. Huang J, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem Biophys Res Commun. 2015;463(4):551–6. https://doi.org/10.1016/j.bbrc.2015.05.083.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Zai Lab Co., Ltd for their donation of the niraparib (ZL-2306).

Funding

This study was supported by the National Natural Science Foundation of China (81773236, 81800429 and 81972852), Key Research & Development Project of Hubei Province (2020BCA069), Nature Science Foundation of Hubei Province (2020CFB612), Health Commission of Hubei Province Medical Leading Talent Project, Young and Middle-Aged Medical Backbone Talents of Wuhan (WHQG201902), Application Foundation Frontier Project of Wuhan (2020020601012221), Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (znpy2019001, znpy2019048, and ZNJC201922), and Chinese Society of Clinical Oncology TopAlliance Tumor Immune Research Fund (Y-JS2019-036).

Author information

Authors and Affiliations

Authors

Contributions

NZ, JZ, YGong and CX designed the study, analyzed the data and wrote this manuscript. NZ, YGao, YL and JL performed the study. NZ, ZZ, XJ and JZ analyzed the date. All authors reviewed and agreed to the publication of the manuscript.

Corresponding authors

Correspondence to Y. Gong or C. Xie.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interests exists in this research project.

Ethics approval

All procedures performed in studies involving animals were approved by the Institutional Animal Care and Use Committee of Wuhan University. This article does not contain any studies involving human participants performed by any of the authors.

Informed consent

Informed consent was not applicable, and animal experiments were approved by IACUC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 2049 KB)

Supplementary file2 (PDF 776 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Gao, Y., Zeng, Z. et al. PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clin Transl Oncol 23, 1827–1837 (2021). https://doi.org/10.1007/s12094-021-02591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02591-z

Keywords

Navigation