Skip to main content

Advertisement

Log in

Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The need for an intact immune system for cancer radiation therapy to be effective suggests that radiation not only acts directly on the tumor but also indirectly, through the activation of host immune components. Recent studies demonstrated that endogenous type I interferons (type I IFNs) play a role in radiation-mediated anti-tumor immunity by enhancing the ability of dendritic cells to cross-prime CD8+ T cells. However, it is still unclear to what extent endogenous type I IFNs contribute to the recruitment and function of CD8+ T cells. Little is also known about the effects of type I IFNs on myeloid cells. In the current study, we demonstrate that type I and type II IFNs (IFN-γ) are both required for the increased production of CXCL10 (IP-10) chemokine by myeloid cells within the tumor after radiation treatment. Radiation-induced intratumoral IP-10 levels in turn correlate with tumor-infiltrating CD8+ T cell numbers. Moreover, type I IFNs promote potent tumor-reactive CD8+ T cells by directly affecting the phenotype, effector molecule production, and enhancing cytolytic activity. Using a unique inducible expression system to increase local levels of IFN-α exogenously, we show here that the capacity of radiation therapy to result in tumor control can be enhanced. Our preclinical approach to study the effects of local increase in IFN-α levels can be used to further optimize the combination therapy strategy in terms of dosing and scheduling, which may lead to better clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IFN:

Interferon

MFI:

Mean fluorescence intensity

RT:

Radiation therapy

SBRT:

Stereotactic body radiation therapy

tdLN:

Tumor-draining lymph nodes

TILs:

Tumor-infiltrating lymphocytes

Veh:

Vehicle control

References

  1. Connell PP, Hellman S (2009) Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res 69:383–392. doi:10.1158/0008-5472.CAN-07-6871

    Article  CAS  PubMed  Google Scholar 

  2. Hoopes DJ, Tann M, Fletcher JW, Forquer JA, Lin PF, Lo SS, Timmerman RD, McGarry RC (2007) FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer 56:229–234. doi:10.1016/j.lungcan.2006.12.009

    Article  PubMed  Google Scholar 

  3. Nedzi LA (2008) The implementation of ablative hypofractionated radiotherapy for stereotactic treatments in the brain and body: observations on efficacy and toxicity in clinical practice. Semin Radiat Oncol 18:265–272. doi:10.1016/j.semradonc.2008.04.009

    Article  PubMed  Google Scholar 

  4. Ritter M (2008) Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol 18:249–256. doi:10.1016/j.semradonc.2008.04.007

    Article  PubMed Central  PubMed  Google Scholar 

  5. Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J, Zatcky J, Zelefsky MJ, Fuks Z (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71:484–490. doi:10.1016/j.ijrobp.2007.11.046

    Article  PubMed  Google Scholar 

  6. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    CAS  PubMed  Google Scholar 

  7. Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8 + T cells: changing strategies for cancer treatment. Blood 114:589–595. doi:10.1182/blood-2009-02-206870

    Article  CAS  PubMed  Google Scholar 

  8. Shiao SL, Coussens LM (2010) The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 15:411–421. doi:10.1007/s10911-010-9194-9

    Article  PubMed Central  PubMed  Google Scholar 

  9. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu YX, Auh SL (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496. doi:10.1158/0008-5472.CAN-10-2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893. doi:10.1016/j.biochi.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Gresser I, Bourali C, Levy JP, Fontaine-Brouty-Boye D, Thomas MT (1969) Increased survival in mice inoculated with tumor cells and treated with interferon preparations. Proc Natl Acad Sci USA 63:51–57

    Article  CAS  PubMed  Google Scholar 

  12. Picaud S, Bardot B, De Maeyer E, Seif I (2002) Enhanced tumor development in mice lacking a functional type I interferon receptor. J Interferon Cytokine Res 22(4):457–462. doi:10.1089/10799900252952244

    Google Scholar 

  13. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:119–134

    Article  CAS  PubMed  Google Scholar 

  14. Gresser I, Belardelli F (2002) Endogenous type I interferons as a defense against tumors. Cytokine Growth Factor Rev 13:111–118

    Article  CAS  PubMed  Google Scholar 

  15. Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22:333–340. doi:10.1016/j.coi.2010.02.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sorensen EW, Gerber SA, Frelinger JG, Lord EM (2010) IL-12 suppresses vascular endothelial growth factor receptor 3 expression on tumor vessels by two distinct IFN-gamma-dependent mechanisms. J Immunol 184:1858–1866. doi:10.4049/jimmunol.0903210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

    CAS  PubMed  Google Scholar 

  18. Gerber SA, Pober JS (2008) IFN-alpha induces transcription of hypoxia-inducible factor-1alpha to inhibit proliferation of human endothelial cells. J Immunol 181:1052–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Vogel R, Mammeri H, Mallet J (2008) Lentiviral vectors mediate nonimmunosuppressive rapamycin analog-induced production of secreted therapeutic factors in the brain: regulation at the level of transcription and exocytosis. Hum Gene Ther 19:167–178. doi:10.1089/hum.2007.125

    Article  CAS  PubMed  Google Scholar 

  20. Gerber SA, Sorensen EW, Sedlacek AL, Lim JY, Skrombolas D, Frelinger JG, Lord EM (2013) Local expression of interleukin-2 by B16 melanoma cells results in decreased tumour growth and long-term tumour dormancy. Immunology 138:280–292. doi:10.1111/imm.12037

    Article  CAS  PubMed  Google Scholar 

  21. Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Frelinger JG, Lord EM (2013) IFN-gamma mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. doi:10.1016/j.ajpath.2013.02.041

    Google Scholar 

  22. Brassard DL, Grace MJ, Bordens RW (2002) Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol 71:565–581

    CAS  PubMed  Google Scholar 

  23. Taylor JL, Grossberg SE (1998) The effects of interferon-alpha on the production and action of other cytokines. Semin Oncol 25:23–29

    CAS  PubMed  Google Scholar 

  24. Hong M, Puaux AL, Huang C et al (2011) Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 71:6997–7009. doi:10.1158/0008-5472.CAN-11-1466

    Article  CAS  PubMed  Google Scholar 

  25. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8 + T cell responses through CD8{alpha} + dendritic cells. J Exp Med 208:2005–2016. doi:10.1084/jem.20101159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kline J, Zhang L, Battaglia L, Cohen KS, Gajewski TF (2012) Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. J Immunol 188:2630–2642. doi:10.4049/jimmunol.1100845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592. doi:10.1146/annurev.immunol.16.1.569

    Article  CAS  PubMed  Google Scholar 

  28. Pollock R, Clackson T (2002) Dimerizer-regulated gene expression. Curr Opin Biotechnol 13:459–467

    Article  CAS  PubMed  Google Scholar 

  29. Voloshin T, Voest EE, Shaked Y (2013) The host immunological response to cancer therapy: an emerging concept in tumor biology. Exp Cell Res. doi:10.1016/j.yexcr.2013.03.007

    PubMed  Google Scholar 

  30. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN, Komatsu K, Akira S, Kawai T (2013) DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci USA 110:2969–2974. doi:10.1073/pnas.1222694110

    Article  CAS  PubMed  Google Scholar 

  31. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  CAS  PubMed  Google Scholar 

  32. Wong LH, Hatzinisiriou I, Devenish RJ, Ralph SJ (1998) IFN-gamma priming up-regulates IFN-stimulated gene factor 3 (ISGF3) components, augmenting responsiveness of IFN-resistant melanoma cells to type I IFNs. J Immunol 160:5475–5484

    CAS  PubMed  Google Scholar 

  33. Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2:378–386. doi:10.1038/35073080

    Article  CAS  PubMed  Google Scholar 

  34. Rayamajhi M, Humann J, Kearney S, Hill KK, Lenz LL (2010) Antagonistic crosstalk between type I and II interferons and increased host susceptibility to bacterial infections. Virulence 1:418–422. doi:10.4161/viru.1.5.12787

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. John G. Frelinger for suggestions and thoughtful discussions pertinent to this study. This project was financially supported by National Institutes of Health, Grant CA 28332.

Conflict of interest

The authors disclose no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith M. Lord.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J.Y.H., Gerber, S.A., Murphy, S.P. et al. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells. Cancer Immunol Immunother 63, 259–271 (2014). https://doi.org/10.1007/s00262-013-1506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1506-7

Keywords

Navigation