Skip to main content

Advertisement

Log in

MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The poly-(ADP-ribose) polymerase (PARP) inhibitor, MK-4827, is a novel potent, orally bioavailable PARP-1 and PARP-2 inhibitor currently in phase I clinical trials for cancer treatment. No preclinical data currently exist on the combination of MK-4827 with radiotherapy. The current study examined combined treatment efficacy of MK-4827 and fractionated radiotherapy using a variety of human tumor xenografts of differing p53 status: Calu-6 (p53 null), A549 (p53 wild-type [wt]) and H-460 (p53 wt) lung cancers and triple negative MDA-MB-231 human breast carcinoma. To mimic clinical application of radiotherapy, fractionated radiation (2 Gy per fraction) schedules given once or twice daily for 1 to 2 weeks combined with MK-4827, 50 mg/kg once daily or 25 mg/kg twice daily, were used. MK-4827 was found to be highly and similarly effective in both radiation schedules but maximum radiation enhancement was observed when MK-4827 was given at a dose of 50 mg/kg once daily (EF = 2.2). MK-4827 radiosensitized all four tumors studied regardless of their p53 status. MK-4827 reduced PAR levels in tumors by 1 h after administration which persisted for up to 24 h. This long period of PARP inhibition potentially adds to the flexibility of design of future clinical trials. Thus, MK-4827 shows high potential to improve the efficacy of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    Article  PubMed  CAS  Google Scholar 

  2. Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440

    Article  PubMed  CAS  Google Scholar 

  3. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  4. Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58:410–419

    Article  PubMed  CAS  Google Scholar 

  5. Plummer ER (2006) Inhibition of poly(ADP-ribose) polymerase in cancer. Curr Opin Pharmacol 6:364–368

    Article  PubMed  CAS  Google Scholar 

  6. Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358

    Article  PubMed  CAS  Google Scholar 

  7. Gerö D, Szabó C (2008) Poly(ADP-ribose) polymerase: a new therapeutic target? Curr Opin Anaesthesiol 21:111–121

    Article  PubMed  Google Scholar 

  8. Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283(5747):593–596

    Article  PubMed  CAS  Google Scholar 

  9. Shieh WM, Ame JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 273:30069–30072

    Article  PubMed  CAS  Google Scholar 

  10. Clark JB, Ferris GM, Pinder S (1971) Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5′-methyl nicotinamide. Biochim Biophys Acta 238:82–85

    Article  PubMed  CAS  Google Scholar 

  11. Underhill C, Toulmonde M, Bonnefoi H (2010) A review of PARP inhibitors: from bench to bedside. Ann Oncol 22(2):268–279

    Article  PubMed  Google Scholar 

  12. Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7(4):1–20

    Article  PubMed  Google Scholar 

  13. Zaremba T, Curtin NJ (2007) PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med Chem 7:515–523

    PubMed  CAS  Google Scholar 

  14. Comen EA, Robson M (2010) Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology (Williston Park) 24(1):55–62

    Google Scholar 

  15. Brock WA, Milas L, Bergh S, Lo R, Szabo C, Mason KA (2004) Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett 205(2):155–160

    Article  PubMed  CAS  Google Scholar 

  16. Mason KA, Valdecanas D, Hunter NR, Milas L (2008) INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase, enhances tumor response to doxorubicin. Invest New Drugs 26(1):1–5

    Article  PubMed  CAS  Google Scholar 

  17. Telli ML, Ford JM (2010) PARP Inhibitors in Breast Cancer. Clin Adv Hematol Oncol 8(9):629–635

    PubMed  Google Scholar 

  18. Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ (2009) PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 47(1):13–26

    Article  PubMed  CAS  Google Scholar 

  19. Lewis C, Low JA (2007) Clinical poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Curr Opin Investig Drugs 8(12):1051–1056

    PubMed  CAS  Google Scholar 

  20. Southan GJ, Szabó C (2003) Inhibitors of poly(ADP-ribose) polymerase. Curr Med Chem 10(4):321–340

    PubMed  CAS  Google Scholar 

  21. Noël G, Godon C, Fernet M, Giocanti N, Mégnin-Chanet F, Favaudon V (2006) Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5(3):564–574

    Article  PubMed  Google Scholar 

  22. Donawho CK, Luo Y, Luo Y, Penning TD et al (2007) ABT-888, an orallyactive poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13(9):2728–2737

    Article  PubMed  CAS  Google Scholar 

  23. Calabrese CR, Almassy R, Barton S et al (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67

    Article  PubMed  CAS  Google Scholar 

  24. Dungey FA, Caldecott KW, Chalmers AJ (2009) Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 8(8):2243–2254

    Article  PubMed  CAS  Google Scholar 

  25. Khan K, Araki K, Wang D et al (2010) Head and neck cancer radiosensitization by the novel poly (ADP-ribose) polymerase inhibitor GPI-15427. Head Neck 32(3):381–391

    PubMed  Google Scholar 

  26. Russo AL, Kwon HC, Burgan WE et al (2009) In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-Ribose) polymerase inhibitor E7016. Clin Cancer Res 15(2):607–612

    Article  PubMed  CAS  Google Scholar 

  27. Albert JM, Cao C, Kim KW et al (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13(10):3033–3042

    Article  PubMed  CAS  Google Scholar 

  28. Efimova EV, Mauceri HJ, Golden DW et al (2010) Poly(ADP-Ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res 70(15):6277–6282

    Article  PubMed  CAS  Google Scholar 

  29. Thomas HD, Calabrese CR, Batey MA et al (2007) Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 6(3):945–956

    Article  PubMed  CAS  Google Scholar 

  30. Dungey FA, Löser DA, Chalmers AJ (2008) Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 72(4):1188–1197

    Article  PubMed  CAS  Google Scholar 

  31. Jones P, Altamura S, Boueres J et al (2009) Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and −2 mutant tumors. J Med Chem 52(22):7170–7185

    Article  PubMed  CAS  Google Scholar 

  32. Penning TD (2010) Small-molecule PARP modulators – current status and future therapeutic potential. Curr Opin Drug Discov Devel 13(5):577–578

    PubMed  CAS  Google Scholar 

  33. Sandhu S, Wenham R, Wilding G, McFadden M, Sun L, Toniatti C, Stroh M, Carpenter C, De Bono J, Schelman W (2010) First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. ASCO Annual Meeting, Chicago, IL, USA (2010):Abs 3001

  34. Ménissier de Murcia J, Ricoul M, Tartier L et al (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263

    Article  PubMed  Google Scholar 

  35. Powell C, Mikropoulos C, Kaye SB, Nutting CM, Bhide SA, Newbold K, Harrington KJ (2010) Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 36(7):566–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was sponsored by a Laboratory Study Agreement with Merck Sharp & Dohme Corp.

Conflict of Interest

Authors Anjili Mathur, Carolyn Buser-Doepner and Carlo Toniatti are current or former employees of Merck Sharp & Dohme Corp.

All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Mason, K.A., Ang, K.K. et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs 30, 2113–2120 (2012). https://doi.org/10.1007/s10637-011-9770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9770-x

Keywords

Navigation