Skip to main content
Log in

A novel capillary nano-immunoassay for assessing androgen receptor splice variant 7 in plasma. Correlation with CD133 antigen expression in circulating tumor cells. A pilot study in prostate cancer patients

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Androgen receptor (AR) splice variant 7 (AR-V7) has been related with both a higher risk of prostate cancer (PC) progression and differential responsiveness to hormonal agents versus chemotherapy. The objective of this study was to investigate the feasibility of a novel capillary nano-immunoassay in assessing AR-V7 in plasma from PC patients.

Methods

Patients with either localized or advanced PC were included in the study. Assessment of AR-V7 in plasma was performed through a capillary nano-immunoassay platform. Correlation with clinical data, stem cell biomarkers (such as CD133+), AR amplification and PTEN status was identified.

Results

The study included 72 PC patients. AR-V7 signal was detected in 21 (29%) patients: 17 (81%) had a Gleason score ≥7, 15 (71%) castration-resistant prostate cancer (CRPC), 18 (86%) metastatic disease and PSA (median) high than AR-V7 negative (p < 0.05). CD133 was expressed in 69 (96%) patients. The median CD133+ expression in circulating tumor cells CTCs was higher among the 21 AR-V7 positive cases versus AR-V7 negative (7 vs. 3). Androgen Receptor and PTEN fluorescence in situ hybridization (FISH) on CD133+ captured cells were performed: 37 cases showed ≥four CD133+ CTCs, of which 81% showed an increased AR copy number. This percentage was similar in both AR-V7-positive and AR-V7-negative patients. A total of 68% of the cases showed deletion of PTEN: 70% were ARV-7 positive vs. 67%, which were AR-V7 negative.

Conclusions

Assessing the presence of AR-V7 in plasma from PC patients is feasible by a novel capillary nano-immunoassay. AR-V7 was observed in 29% of the tumors and is more frequent in aggressive tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nadiminty N, Gao AC. Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives. World J Urol. 2012;30(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  2. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reyes EE, Gillard M, Duggan R, Wroblewski K, Kregel S, Isikbay M, et al. Molecular analysis of CD133-positive circulating tumor cells from patients with metastatic castrationresistant prostate cancer .php. J Transl Sci. 2015;1(1).

  4. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res MCR. 2011;9(8):997–1007.

    Article  CAS  PubMed  Google Scholar 

  5. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(19):6302–9.

    Article  Google Scholar 

  6. Punnoose EA, Ferraldeschi R, Szafer-Glusman E, Tucker EK, Mohan S, Flohr P, et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer. 2015;113(8):1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J-Q, Wakefield LM, Goldstein DJ. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics. J Transl Med. 2015;13:182.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, Aittokallio T, et al. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. Am J Pathol. 2014;184(8):2163–73.

    Article  CAS  PubMed  Google Scholar 

  9. Mooney SM, Parsana P, Hernandez JR, Liu X, Verdone JE, Torga G, et al. The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J Cell Biochem. 2015;116(1):115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1(5):582–91.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mostaghel EA, Plymate SR, Montgomery B. Molecular pathways: targeting resistance in the androgen receptor for therapeutic benefit. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(4):791–8.

    Article  CAS  Google Scholar 

  12. Liu G, Sprenger C, Sun S, Epilepsia KS, Haugk K, Zhang X, et al. AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia. 2013;15(9):1009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z, et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep. 2015;5:7654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA. 2010;107(39):16759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao B, Qi Y, Zhang G, Xu D, Zhan Y, Alvarez X, et al. Androgen receptor splice variants activating the fulllength receptor in mediating resistance to androgen-directed therapy. Oncotarget. 2014;5(6):1646–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun S, Sprenger CCT, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120(8):2715–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Morrissey C, Sun S, Ketchandji M, Nelson PS, True LD, et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One. 2011;6(11):e27970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016;2(11):1441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pal SK, He M, Wilson T, Liu X, Zhang K, Carmichael C, et al. Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clin Genitourin Cancer. 2015;13(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  21. Kong D, Sethi S, Li Y, Chen W, Sakr WA, Heath E, et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate. 2015;75(2):161–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. García or J. J. Cruz-Hernández.

Ethics declarations

Conflict to interest

We declare that we have no conflict of interest.

Funding

Partiality supported by Grant from Gerencia Regional de Salud, Junta de Castilla y León (Refs: GRS 992/A/14 y BIO/SA35/14) and INNOCAMPUS Program (CEI10-1-0010). We thank M.A. Hernández from the IBSAL for their excellent technical assistance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, J.L., Lozano, R., Misiewicz-Krzeminska, I. et al. A novel capillary nano-immunoassay for assessing androgen receptor splice variant 7 in plasma. Correlation with CD133 antigen expression in circulating tumor cells. A pilot study in prostate cancer patients. Clin Transl Oncol 19, 1350–1357 (2017). https://doi.org/10.1007/s12094-017-1675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1675-5

Keywords

Navigation