Skip to main content
Log in

Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives

  • Topic paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Background

The emergence of castration resistance has remained the primary obstacle in prostate cancer therapy for several decades. Mechanisms likely to be involved in castration-resistant progression have been studied extensively, but have failed to yield many meaningful and effective targets. The re-activation of the androgen receptor (AR) in castration-resistant prostate cancer (CRPC) is now recognized as the central event in this process, and therapeutic modalities are being devised to combat it.

Methods

A review of literature was performed to highlight the important factors that play a role in the aberrant activation of the AR in CRPC.

Results

Seminal and exciting advances made in the past few years in the discovery of the roles of new intrinsic factors such as intracrine androgens, gene fusions involving the ETS oncogenes, and splice variants of the AR are reviewed. New and emerging hypotheses about the involvement of factors such as cytokines and other signaling pathways are discussed.

Conclusions

This review summarizes the most recent advances in the persistent activation of the androgen receptor signaling pathway and provides a perspective about their significance in CRPC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS (2006) Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res 66:10613–10620

    Article  PubMed  CAS  Google Scholar 

  3. Visakorpi T, Hyytinen E, Koivisto P et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406

    Article  PubMed  CAS  Google Scholar 

  4. Chen CD, Welsbie DS, Tran C et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  Google Scholar 

  5. Palmberg C, Koivisto P, Kakkola L, Tammela TLJ, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995

    Article  PubMed  CAS  Google Scholar 

  6. Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261

    Article  PubMed  CAS  Google Scholar 

  7. Koochekpour S (2010) Androgen receptor signaling and mutations in prostate cancer. Asian J Androl 12:639–657

    Article  PubMed  CAS  Google Scholar 

  8. Brooke GN, Bevan CL (2009) The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 10:18–25

    Article  PubMed  CAS  Google Scholar 

  9. Buchanan G, Yang M, Cheong A et al (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum Mol Genet 13:1677–1692

    Article  PubMed  CAS  Google Scholar 

  10. Buchanan G, Yang M, Harris JM et al (2001) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol 15:46–56

    Article  PubMed  CAS  Google Scholar 

  11. Taylor BS, Schultz N, Hieronymus H et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  PubMed  CAS  Google Scholar 

  12. Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME (2010) Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem 56:1492–1495

    Article  PubMed  Google Scholar 

  13. Steinkamp MP, O’Mahony OA, Brogley M et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade Therapy. Cancer Res 69:4434–4442

    Article  PubMed  CAS  Google Scholar 

  14. Tomlins SA, Bjartell A, Chinnaiyan AM et al (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286

    Article  PubMed  CAS  Google Scholar 

  15. Tomlins SA, Mehra R, Rhodes DR et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66:3396–3400

    Article  PubMed  CAS  Google Scholar 

  16. Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM (2008) The discovery and application of gene fusions in prostate cancer. BJU Int 102:276–282

    Article  PubMed  CAS  Google Scholar 

  17. Demichelis F, Fall K, Perner S et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599

    Article  PubMed  CAS  Google Scholar 

  18. Attard G, Swennenhuis JF, Olmos D et al (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69:2912–2918

    Article  PubMed  CAS  Google Scholar 

  19. Klezovitch O, Risk M, Coleman I et al (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105:2105–2110

    Article  PubMed  Google Scholar 

  20. Bastus NC, Boyd LK, Mao X et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548

    Article  PubMed  Google Scholar 

  21. Fine SW, Gopalan A, Leversha MA et al (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 23:1325–1333

    Article  PubMed  Google Scholar 

  22. Yu J, Yu J, Mani R-S et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    Article  PubMed  CAS  Google Scholar 

  23. Carver BS, Tran J, Gopalan A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    Article  PubMed  CAS  Google Scholar 

  24. Yoshimoto M, Joshua AM, Cunha IW et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460

    Article  PubMed  CAS  Google Scholar 

  25. Salami SS, Schmidt F, Laxman B et al Combining urinary detection of TMPRSS2:ERG and CaP3 with serum PSA to predict diagnosis of prostate cancer. Urologic oncology: seminars and original investigations. (in press, corrected proof)

  26. Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly (ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678

    Article  PubMed  CAS  Google Scholar 

  27. Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642

    Article  PubMed  CAS  Google Scholar 

  28. Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13:2465–2477

    Article  PubMed  CAS  Google Scholar 

  29. Blackwood EM, Kadonaga JT (1998) Going the distance: the current view of enhancer action. Science 281:60–63

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q, Li W, Liu XS et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392

    Article  PubMed  Google Scholar 

  31. Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  PubMed  CAS  Google Scholar 

  32. Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate: n/a-n/a

  33. Tepper CG, Boucher DL, Ryan PE et al (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62:6606–6614

    PubMed  CAS  Google Scholar 

  34. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    Article  PubMed  CAS  Google Scholar 

  35. Guo Z, Yang X, Sun F et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313

    Article  PubMed  CAS  Google Scholar 

  36. Hu R, Dunn TA, Wei S et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22

    Article  PubMed  CAS  Google Scholar 

  37. Watson PA, Chen YF, Balbas MD et al Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. In: Proceedings of the national academy of sciences 107:16759–16765

  38. Hornberg E, Ylitalo EB, Crnalic S et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6:e19059

    Article  PubMed  Google Scholar 

  39. Nishiyama T, Hashimoto Y, Takahashi K (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10:7121–7126

    Article  PubMed  CAS  Google Scholar 

  40. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura Y, Suzuki T, Nakabayashi M et al (2005) In situ androgen producing enzymes in human prostate cancer. Endocr Relat Cancer 12:101–107

    Article  PubMed  CAS  Google Scholar 

  42. Page ST, Lin DW, Mostaghel EA et al (2006) Persistent intraprostatic androgen concentrations after medical castration in healthy men. Clin Endocrinol Metab 91:3850–3856

    Article  CAS  Google Scholar 

  43. Dillard PR, Lin M-F, Khan SA (2008) Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 295:115–120

    Article  PubMed  CAS  Google Scholar 

  44. Mostaghel EA, Page ST, Lin DW et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67:5033–5041

    Article  PubMed  CAS  Google Scholar 

  45. Leon CG, Locke JA, Adomat HH et al (2010) Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70:390–400

    PubMed  CAS  Google Scholar 

  46. Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med. doi:10.2119/molmed.2010.00143

  47. Mostaghel EA, Nelson PS (2008) Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract Res Clin Endocrinol Metab 22:243–258

    Article  PubMed  CAS  Google Scholar 

  48. Hofland J, van Weerden WM, Dits NFJ et al (1999) Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 70:1256–1264

    Article  Google Scholar 

  49. Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol Semin Orig Investig 27:251–257

    Article  CAS  Google Scholar 

  50. George DJ, Halabi S, Shepard TF et al (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 11:1815–1820

    Article  PubMed  CAS  Google Scholar 

  51. Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015

    Article  PubMed  CAS  Google Scholar 

  52. Corcoran NM, Costello AJ (2003) Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 91:545–553

    Article  PubMed  CAS  Google Scholar 

  53. Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC (2007) Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67:764–773

    Article  PubMed  CAS  Google Scholar 

  54. Feng S, Tang Q, Sun M, Chun JY, Evans CP, Gao AC (2009) Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Mol Cancer Ther 8:665–671

    Article  PubMed  CAS  Google Scholar 

  55. Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Chem Biol 277:38087–38094

    Article  CAS  Google Scholar 

  56. Chun JY, Nadiminty N, Dutt S et al (2009) Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 15:4815–4822

    Article  PubMed  CAS  Google Scholar 

  57. Culig Z Cytokine disbalance in common human cancers. Biochimica et Biophysica Acta (BBA). Mole Cell Res 1813:308–314

  58. Santer FdrR, Malinowska K, Culig Z, Cavarretta IT (2010) Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17:241–253

    Google Scholar 

  59. Taguchi Y, Yamamoto M, Yamate T et al (1998) Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 110:559–574

    CAS  Google Scholar 

  60. García-Moreno C, Méndez-Dávila C, de la Piedra C, Castro-Errecaborde NA, Traba ML (2002) Human prostatic carcinoma cells produce an increase in the synthesis of interleukin-6 by human osteoblasts. Prostate 50:241–246

    Article  PubMed  Google Scholar 

  61. Smith PC, Keller ET (2001) Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48:47–53

    Article  CAS  Google Scholar 

  62. Wallner L, Dai J, Escara-Wilke J et al (2006) Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res 66:3087–3095

    Article  PubMed  CAS  Google Scholar 

  63. Dorff TB, Goldman B, Pinski JK et al (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (Siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16:3028–3034

    Google Scholar 

  64. Karkera J, Steiner H, Li W et al (2011) The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate (Epub ahead of print)

  65. Takeshi U, Sadar MD, Suzuki H et al (2005) Interleukin-4 in patients with prostate cancer. Anticancer Res 25:4595–4598

    PubMed  Google Scholar 

  66. Lee SO, Lou W, Hou M, Onate SA, Gao AC (2003) Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene 22:7981–7988

    Article  PubMed  Google Scholar 

  67. Lee SO, Chun JY, Nadiminty N, Lou W, Feng S, Gao AC (2009) Interleukin-4 activates androgen receptor through CBP/p300. Prostate 69:126–132

    Article  PubMed  CAS  Google Scholar 

  68. Lee SO, Lou W, Nadiminty N, Lin X, Gao AC (2005) Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64:160–167

    Article  PubMed  CAS  Google Scholar 

  69. Lee SO, Pinder E, Chun JY, Lou W, Sun M, Gao AC (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68:85–91

    Article  PubMed  CAS  Google Scholar 

  70. Huang J, Yao JL, Zhang L et al (2005) Differential expression of interleukin-8 and Its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate can./cer. Am J Pathol 166:1807–1815

    Article  PubMed  CAS  Google Scholar 

  71. Veltri RW, Miller MC, Zhao G et al (1999) Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 53:139–147

    Article  PubMed  CAS  Google Scholar 

  72. Seaton A, Scullin P, Maxwell PJ et al (2008) Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29:1148–1156

    Article  PubMed  CAS  Google Scholar 

  73. Lee L-F, Louie MC, Desai SJ et al (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205

    Article  PubMed  CAS  Google Scholar 

  74. Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  PubMed  CAS  Google Scholar 

  75. MacManus CF, Pettigrew J, Seaton A et al (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5:737–748

    Article  PubMed  CAS  Google Scholar 

  76. Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJJ (2008) Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 7:2649–2661

    Article  PubMed  CAS  Google Scholar 

  77. Wilson C, Purcell C, Seaton A et al (2008) Chemotherapy-induced CXC-Chemokine/CXC-Chemokine receptor signaling in Metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-κB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327:746–759

    Article  PubMed  CAS  Google Scholar 

  78. Singh R, Lokeshwar B (2009) Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer 8:57

    Article  PubMed  Google Scholar 

  79. Dhir R, Ni Z, Lou W, DeMiguel F, Grandis JR, Gao AC (2002) Stat3 activation in prostatic carcinomas. Prostate 51:241–246

    Article  PubMed  CAS  Google Scholar 

  80. Ok Lee S, Lou W, Qureshi KM, Mehraein-Ghomi F, Trump DL, Gao AC (2004) RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate 60:303–309

    Article  Google Scholar 

  81. Matsuda T, Junicho A, Yamamoto T et al (2001) Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179–187

    Article  PubMed  CAS  Google Scholar 

  82. De Miguel F, Lee S, Onate S, Gao A (2003) Stat3 enhances transactivation of steroid hormone receptors. Nucl Recept 1:3

    Article  PubMed  Google Scholar 

  83. De Miguel F, Lee SO, Lou W et al (2002) Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. Prostate 52:123–129

    Article  CAS  Google Scholar 

  84. Huang H, Murphy T, Shu P, Barton A, Barton B (2005) Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells. Mol Cancer 4:2

    Article  PubMed  Google Scholar 

  85. Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    Article  PubMed  CAS  Google Scholar 

  86. Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Jänne OA (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151–24156

    Article  PubMed  CAS  Google Scholar 

  87. Cinar B, Yeung F, Konaka H et al (2004) Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells. Biochem J 379:421–431

    Article  PubMed  CAS  Google Scholar 

  88. Zhang L, Altuwaijri S, Deng F et al (2009) NF-[kappa]B regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175:489–499

    Article  PubMed  CAS  Google Scholar 

  89. Jin RJ, Lho Y, Connelly L et al (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68:6762–6769

    Article  PubMed  CAS  Google Scholar 

  90. Ishiguro H, Akimoto K, Nagashima Y et al (2009) aPKCε promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci 106:16369–16374

    Article  PubMed  CAS  Google Scholar 

  91. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-[kappa]B signalling. Nat Commun 2:162

    Article  PubMed  Google Scholar 

  92. Wang J, Cai Y, Shao L-j et al (2010) Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res 71:1325–1333

    Article  PubMed  Google Scholar 

  93. Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F (2005) Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer 93:1019–1023

    Article  PubMed  CAS  Google Scholar 

  94. Nadiminty N, Chun JY, Lou W, Lin X, Gao AC (2008) NF-κB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68:1725–1733

    Article  PubMed  CAS  Google Scholar 

  95. Lessard L, Saad F, Le Page C et al (2007) NF-[kappa]B2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. Cell Signal 19:1093–1100

    Article  PubMed  CAS  Google Scholar 

  96. Nadiminty N, Lou W, Sun M et al (2010) Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 70:3309–3319

    Article  PubMed  CAS  Google Scholar 

  97. Nadiminty N, Dutt S, Tepper C, Gao AC (2010) Microarray analysis reveals potential target genes of NF-κB2/p52 in LNCaP prostate cancer cells. prostate 70:276–287

    PubMed  CAS  Google Scholar 

  98. Nadiminty N, Chun JY, Hu Y, Dutt S, Lin X, Gao AC (2007) LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway. Biochem Biophys Res Commun 359:379–384

    Article  PubMed  CAS  Google Scholar 

  99. Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci 103:7264–7269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH CA140468, CA118887, CA109441, DOD PC080538 (Gao, AC), and DOD PC100502 (Nadiminty N).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen C. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadiminty, N., Gao, A.C. Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives. World J Urol 30, 287–295 (2012). https://doi.org/10.1007/s00345-011-0771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-011-0771-3

Keywords

Navigation