Skip to main content
Log in

Gene Expression Analysis of Immunomagnetically Enriched Circulating Tumor Cell Fraction in Castration-Resistant Prostate Cancer

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Molecular characterization of tumors could be a key to therapeutic decision-making with regards to targeted therapies in castration-resistant prostate cancer (CRPC). A convenient solution may be non-invasive liquid biopsy testing of circulating tumor cells (CTCs). For this reason, CTC-enriched samples obtained by immunomagnetic separation (AdnaTest®) were studied as a source material for high-throughput gene expression analysis using BioMark™.

Patients and Methods

CTC-enriched samples from 41 CRPC patients previously determined to be CTC positive using the AdnaTest® were retrospectively re-analysed for androgen receptor (AR) messenger RNA (mRNA), using the updated AdnaTest®. Blood samples were drawn two times from each patient: at the time of CRPC diagnosis and after the third docetaxel cycle. A gene expression panel of 27 genes related to CRPC therapeutic decision-making, including AR full length (ARFL) and splice variant 7 (ARV7), was retrospectively analyzed on a BioMark™ platform in 29 of 41 patients.

Results

The AdnaTest® detected AR mRNA in three-quarters of CTC-positive samples taken at the time of CRPC diagnosis and after the third docetaxel cycle. AR detection was associated with a shorter disease-specific survival (45.0 vs. 20.4 months) at the time of CRPC diagnosis. ARFL expression at the time of CRPC diagnosis, measured on the BioMark™ platform, was associated with a lower decrease of serum level of prostate-specific antigen (sPSA) (p = 0.029), i.e., worse therapy response. ARV7 was found in 38% of the ARFL–-positive samples at both analyzed timepoints.

Conclusion

Detection of AR expression by AdnaTest® in CTC-enriched samples may help predict patients’ survival. These AdnaTest® CTC-enriched samples can be used in a high-throughput quantitative polymerase chain reaction (qPCR) analysis of gene expression, provided that the specificity of the assay for each individual gene is properly validated. The BioMark™ platform can be used for the simultaneous detection of ARFL and ARV7 and other genes in CTC-enriched samples from CRPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bahl A, Oudard S, Tombal B, Ozgüroglu M, Hansen S, Kocak I, et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol. 2013;24:2402–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gulley JL, Mulders P, Albers P, Banchereau J, Bolla M, Pantel K, et al. Perspectives on sipuleucel-T: its role in the prostate cancer treatment paradigm. Oncoimmunology. 2016;5:e1107698.

    Article  PubMed  CAS  Google Scholar 

  4. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    Article  PubMed  CAS  Google Scholar 

  5. Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, et al. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol. 2012;61:549–59.

    Article  PubMed  CAS  Google Scholar 

  6. Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet. 2013;45:747–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mahon KL, Henshall SM, Sutherland RL, Horvath LG. Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr Relat Cancer. 2011;18:R103–23.

    Article  PubMed  CAS  Google Scholar 

  8. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.

    Article  PubMed  CAS  Google Scholar 

  10. Chen J-F, Lu Y-T, Cheng S, Tseng H-R, Figlin RA, Posadas EM. Circulating tumor cells in prostate cancer: beyond enumeration. Clin Adv Hematol Oncol. 2017;15:63–73.

    Article  PubMed  CAS  Google Scholar 

  11. Chen C-L, Mahalingam D, Osmulski P, Jadhav RR, Wang C-M, Leach RJ, et al. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate. 2013;73:813–26.

    Article  PubMed  CAS  Google Scholar 

  12. Onstenk W, de Klaver W, de Wit R, Lolkema M, Foekens J, Sleijfer S. The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer. Cancer Treat Rev. 2016;46:42–50.

    Article  PubMed  Google Scholar 

  13. Galletti G, Portella L, Tagawa ST, Kirby BJ, Giannakakou P, Nanus DM. Circulating tumor cells in prostate cancer diagnosis and monitoring: an appraisal of clinical potential. Mol Diagn Ther. 2014;18:389–402.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Čapoun O, Mikulová V, Jančíková M, Honová H, Kološtová K, Sobotka R, et al. Prognosis of castration-resistant prostate cancer patients—use of the AdnaTest® system for detection of circulating tumor cells. Anticancer Res. 2016;36:2019–26.

    PubMed  Google Scholar 

  15. Todenhöfer T, Hennenlotter J, Feyerabend S, Aufderklamm S, Mischinger J, Kühs U, et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 2012;32:3507–13.

    PubMed  Google Scholar 

  16. Hensler M, Vančurová I, Becht E, Palata O, Strnad P, Tesařová P, et al. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients. Oncoimmunology. 2016;5:e1102827.

    Article  PubMed  CAS  Google Scholar 

  17. Škereňová M, Mikulová V, Čapoun O, Zima T. The characterization of four gene expression analysis in circulating tumor cells made by Multiplex-PCR from the AdnaTest kit on the lab-on-a-chip Agilent DNA 1000 platform. Biochem Medica. 2016;26:103–13.

    Article  Google Scholar 

  18. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034

  19. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.

    Article  PubMed  CAS  Google Scholar 

  20. Allan AL, Keeney M. Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol. 2010;2010:426218.

    Article  PubMed  Google Scholar 

  21. Sieuwerts AM, Kraan J, Bolt-de Vries J, van der Spoel P, Mostert B, Martens JWM, et al. Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR. Breast Cancer Res Treat. 2009;118:455–68.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem. 2010;56:1492–5.

    Article  PubMed  Google Scholar 

  23. Nakazawa M, Lu C, Chen Y, Paller CJ, Carducci MA, Eisenberger MA, et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol. 2015;26:1859–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sprenger C, Uo T, Plymate S. Androgen receptor splice variant V7 (AR-V7) in circulating tumor cells: a coming of age for AR splice variants? Ann Oncol. 2015;26:1805–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJM, Mathijssen RHJ, et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol. 2015;68:939–45.

    Article  PubMed  CAS  Google Scholar 

  26. Dijkstra S, Leyten GHJM, Jannink SA, de Jong H, Mulders PFA, van Oort IM, et al. KLK3, PCA3, and TMPRSS2-ERG expression in the peripheral blood mononuclear cell fraction from castration-resistant prostate cancer patients and response to docetaxel treatment. Prostate. 2014;74:1222–30.

    Article  PubMed  CAS  Google Scholar 

  27. Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol. 2014;6:388–98.

    Article  CAS  Google Scholar 

  28. Gorges TM, Riethdorf S, von Ahsen O, Nastał YP, Röck K, Boede M, et al. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget. 2016;7:34930–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao S, Ye H, Gerrin S, Wang H, Sharma A, Chen S, et al. ErbB2 signaling increases androgen receptor expression in abiraterone-resistant prostate cancer. Clin Cancer Res. 2016;22:3672–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer. 2015;6:84–105.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Olmos D, Arkenau H-T, Ang JE, Ledaki I, Attard G, Carden CP, et al. Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol. 2009;20:27–33.

    Article  PubMed  CAS  Google Scholar 

  32. Bitting RL, Healy P, Halabi S, George DJ, Goodin M, Armstrong AJ. Clinical phenotypes associated with circulating tumor cell enumeration in metastatic castration-resistant prostate cancer. Urol Oncol. 2015;33:110.e1–9.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our collaborators from the Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences (CAS) for their help with qPCR measurement and data analysis and Ing. Stanislav Kormunda for his help with the statistical evaluation of the results.

Author information

Authors and Affiliations

Authors

Ethics declarations

Funding

This work was supported by the Ministry of Health, Czech Republic, IGA NT 12205-5/201; institutional support of the General University Hospital RVO VFN 64165 and Progres Q25/LF1; research support of the First Faculty of Medicine SVV 260 263; BIOCEV CZ.1.05/1.1.00/02.0109 from the European Regional Development Fund (ERDF); and LQ1604 NPU II provided by Ministry of Education, Youth and Sports (MEYS).

Conflict of interest

Markéta Škereňová, Veronika Mikulová, Otakar Čapoun, David Švec, Katarína Kološtová, Viktor Soukup, Hana Honová, Tomáš Hanuš, and Tomáš Zima state that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škereňová, M., Mikulová, V., Čapoun, O. et al. Gene Expression Analysis of Immunomagnetically Enriched Circulating Tumor Cell Fraction in Castration-Resistant Prostate Cancer. Mol Diagn Ther 22, 381–390 (2018). https://doi.org/10.1007/s40291-018-0333-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0333-0

Navigation