Skip to main content
Log in

Prospecting Microbial Genomes for Biomolecules and Their Applications

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bioactive molecules of microbial origin are finding increasing biotechnological applications. Their sources range from the terrestrial, marine, and endophytic to the human microbiome. These biomolecules have unique chemical structures and related groups, which enable them to improve the efficiency of the bioprocesses. This review focuses on the applications of biomolecules in bioremediation, agriculture, food, pharmaceutical industries, and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scherlach K, Hertweck C (2021) Mining and unearthing hidden biosynthetic potential. Nat Commun 12:3864. https://doi.org/10.1038/s41467-021-24133-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Matuszewska A, Jaszek M, Stefaniuk D et al (2018) Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS ONE 13:e0197044. https://doi.org/10.1371/journal.pone.0197044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Adeleke BS, Babalola OO (2021) Biotechnological overview of agriculturally important endophytic fungi. Hortic Environ Biotechnol 62:507–520. https://doi.org/10.1007/s13580-021-00334-1

    Article  Google Scholar 

  4. Abdel-Mageed W, Milne B, Wagner M et al (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362. https://doi.org/10.1039/c001445a

    Article  PubMed  CAS  Google Scholar 

  5. Graça A, Bondoso J, Gaspar H et al (2013) Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (astrophorida, geodiidae). PLoS ONE 8:e78992. https://doi.org/10.1371/journal.pone.0078992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kalia VC (2017) Mining metagenomes for novel bioactive molecules. In: Kalia VC, Shouche Y, Purohit HJ, Rahi P (eds) Mining of microbial wealth and metagenomics. Springer, Singapore, pp 1–9. https://doi.org/10.1007/978-981-10-5708-3_1

    Chapter  Google Scholar 

  7. Kalia VC (2017) The dawn of the era of bioactive compounds. In: Kalia VC (ed) Metabolic engineering for bioactive compounds. Springer, Singapore, pp 3–10. https://doi.org/10.1007/978-981-10-5511-9_1

    Chapter  Google Scholar 

  8. Saini AK, Kalia VC (2017) Potential challenges and alternative approaches in metabolic engineering of bioactive compounds in industrial set up. In: Saini AK, Kalia VC (eds) Metabolic engineering for bioactive compounds. Springer, Singapore, pp 405–412. https://doi.org/10.1007/978-981-10-5511-9_19

    Chapter  Google Scholar 

  9. Radivojevic J, Skaro S, Senerovic L et al (2016) Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl Microbiol Biotechnol 100:161–172. https://doi.org/10.1007/s00253-015-6984-4

    Article  PubMed  CAS  Google Scholar 

  10. Mazzoli R, Riedel K, Pessione E (2017) Bioactive compounds from microbes. Front Microbiol 8:392. https://doi.org/10.3389/fmicb.2017.00392

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elfeki M, Alanjary M, Green SJ et al (2018) Assessing the efficiency of cultivation techniques to recover natural product biosynthetic gene populations from sediment. ACS Chem Biol 13:2074–2081. https://doi.org/10.1021/acschembio.8b00254

    Article  PubMed  CAS  Google Scholar 

  12. O’Mahony MM, Henneberger R, Selvin J et al (2015) Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 6:89–98. https://doi.org/10.1080/21655979.2015.1018493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Jin Z, Di Rienzi SC, Janzon A et al (2015) Novel rhizosphere soil alleles for the enzyme 1-aminocyclopropane-1-carboxylate deaminase queried for function with an in vivo competition assay. Appl Environ Microbiol 82:1050–1059. https://doi.org/10.1128/AEM.03074-15

    Article  PubMed  CAS  Google Scholar 

  14. Luo W, Xu Z, Riber L et al (2016) Diverse gene functions in a soil mobilome. Soil Biol Biochem 101:175–183. https://doi.org/10.1016/j.soilbio.2016.07.018

    Article  CAS  Google Scholar 

  15. Meneses C, Silva B, Medeiros B et al (2016) A metagenomic advance for the cloning and characterization of a cellulase from red rice crop residues. Molecules 21:e831. https://doi.org/10.3390/molecules21070831

    Article  CAS  Google Scholar 

  16. Ilmberger N, Streit WR (2017) Screening for cellulase encoding clones in metagenomic libraries. Methods Mol Biol 1539:205–217. https://doi.org/10.1007/978-1-4939-6691-2_12

    Article  PubMed  CAS  Google Scholar 

  17. Deng J, Gao H, Gao Z et al (2017) Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms. PLoS ONE 12:e0185060. https://doi.org/10.1371/journal.pone.0185060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Huang Y, Huang Y, Ji X et al (2021) Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 11:23922–23942. https://doi.org/10.1039/d1ra02764f

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Bao YJ, Xu Z, Li Y et al (2017) High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J Environ Sci (China) 56:25–35. https://doi.org/10.1016/j.jes.2016.08.022

    Article  PubMed  CAS  Google Scholar 

  20. Liu Q, Tang J, Liu X et al (2019) Vertical response of microbial community and degrading genes to petroleum hydrocarbon contamination in saline alkaline soil. J Environ Sci (China) 81:80–92. https://doi.org/10.1016/j.jes.2019.02.001

    Article  PubMed  CAS  Google Scholar 

  21. Gao Y, Yuan L, Du J et al (2022) Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China. Chemosphere 289:133207. https://doi.org/10.1016/j.chemosphere.2021.133207

    Article  PubMed  CAS  Google Scholar 

  22. Amrutha M, Nampoothiri KM (2022) In silico analysis of nitrilase-3 protein from Corynebacterium glutamicum for bioremediation of nitrile herbicides. J Genet Eng Biotechnol 20:51. https://doi.org/10.1186/s43141-022-00332-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ameen F, AlNadhari S, Al-Homaidan AA (2021) Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci 28:224–231. https://doi.org/10.1016/j.sjbs.2020.09.052

    Article  PubMed  CAS  Google Scholar 

  24. Karthikeyan A, Joseph A, Nair BG (2022) Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genet Eng Biotechnol 20:14. https://doi.org/10.1186/s43141-021-00290-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Liu J, Tang K et al (2015) Genome analysis of Flaviramulus ichthyoenteri Th78(T) in the family Flavobacteriaceae: insights into its quorum quenching property and potential roles in fish intestine. BMC Genomics 16:38. https://doi.org/10.1186/s12864-015-1275-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Anas A, Nilayangod C, Jasmin C et al (2016) Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea. 3 Biotech 6:238. https://doi.org/10.1007/s13205-016-0556-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Soowannayan C, Teja NC, Yatip P et al (2019) Vibrio biofilm inhibitors screened from marine fungi protect shrimp against acute hepatopancreatic necrosis disease (AHPND). Aquaculture 499:1–8. https://doi.org/10.1016/j.aquaculture.2018.09.004

    Article  CAS  Google Scholar 

  28. Liu X, Ashforth E, Ren B et al (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot (Tokyo) 63:415–422. https://doi.org/10.1038/ja.2010.56

    Article  PubMed  CAS  Google Scholar 

  29. Xiong ZQ, Wang JF, Hao YY et al (2013) Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 11:700–717. https://doi.org/10.3390/md11030700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Mai Z, Su H, Zhang S (2016) Isolation and characterization of a glycosyl hydrolase family 16 β-agarase from a mangrove soil metagenomic library. Int J Mol Sci 17:e1360. https://doi.org/10.3390/ijms17081360

    Article  CAS  Google Scholar 

  31. Schipper C, Hornung C, Bijtenhoorn P et al (2009) Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 75:224–233. https://doi.org/10.1128/AEM.01389-08

    Article  PubMed  CAS  Google Scholar 

  32. Li X, Guo J, Dai S et al (2009) Exploring and exploiting microbial diversity through metagenomics for natural product drug discovery. Curr Top Med Chem 9:1525–1535. https://doi.org/10.2174/156802609789909849

    Article  PubMed  CAS  Google Scholar 

  33. Owen J, Robins K, Parachin N et al (2012) A functional screen for recovery of 4’-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environ Microbiol 14:1198–1209. https://doi.org/10.1111/j.1462-2920.2012.02699.x

    Article  PubMed  CAS  Google Scholar 

  34. Wei Y, Zhang L, Zhou Z, Yan X (2018) Diversity of gene clusters for polyketide and nonribosomal peptide biosynthesis revealed by metagenomic analysis of the Yellow Sea sediment. Front Microbiol 9:295. https://doi.org/10.3389/fmicb.2018.00295

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pushpanathan M, Rajendhran J, Jayashree S et al (2012) Identification of a novel antifungal peptide with chitin-binding property from marine metagenome. Protein Pept Lett 19:1289–1296. https://doi.org/10.2174/092986612803521620

    Article  PubMed  CAS  Google Scholar 

  36. Schofield MM, Jain S, Porat D et al (2015) Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ Microbiol 17:3964–3975. https://doi.org/10.1111/1462-2920.1290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Hu Y, Liu Y, Li J et al (2015) Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library. J Ind Microbiol Biotechnol 42:1449–1461. https://doi.org/10.1007/s10295-015-1653-2

    Article  PubMed  CAS  Google Scholar 

  38. De Santi C, Altermark B, Pierechod MM et al (2016) Characterization of a cold-active and salt tolerant esterase identified by functional screening of Arctic metagenomic libraries. BMC Biochem 17:1. https://doi.org/10.1186/s12858-016-0057-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Lewin A, Zhou J, Pham VTT et al (2017) Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 7:183. https://doi.org/10.1186/s13568-017-0485-z

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Burgess JG (2012) New and emerging analytical techniques for marine biotechnology. Curr Opin Biotechnol 23:29–33. https://doi.org/10.1016/j.copbio.2011.12.007

    Article  PubMed  CAS  Google Scholar 

  41. Trindade M, van Zyl LJ, Navarro-Fernández J et al (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:890. https://doi.org/10.3389/fmicb.2015.00890

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lindequist U (2016) Marine-derived pharmaceuticals-challenges and opportunities. Biomol Ther 24:561–571. https://doi.org/10.4062/biomolther.2016.181

    Article  CAS  Google Scholar 

  43. Gouda S, Das G, Sen SK et al (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538. https://doi.org/10.3389/fmicb.2016.01538

    Article  PubMed  PubMed Central  Google Scholar 

  44. Amirzakariya BZ, Shakeri A (2022) Bioactive terpenoids derived from plant endophytic fungi: an updated review (2011–2020). Phytochemistry 197:113130. https://doi.org/10.1016/j.phytochem.2022.113130

    Article  PubMed  CAS  Google Scholar 

  45. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203. https://doi.org/10.1039/c1np00030f

    Article  PubMed  CAS  Google Scholar 

  46. Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628. https://doi.org/10.1021/jm700948z

    Article  PubMed  CAS  Google Scholar 

  47. Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520. https://doi.org/10.1039/B607011F

    Article  PubMed  CAS  Google Scholar 

  48. Tejesvi MV, Kajula M, Mattila S et al (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97. https://doi.org/10.1007/s13225-010-0087-4

    Article  Google Scholar 

  49. Woźniak M, Grządziel J, Gałązka A et al (2019) Metagenomic analysis of bacterial and fungal community composition associated with Paulownia elongate × Paulownia fortunei. BioRes 14:8511–8529

    Article  Google Scholar 

  50. Parmar S, Li Q, Wu Y et al (2018) Endophytic fungal community of Dysphania ambrosioides from two heavy metal-contaminated sites: evaluated by culture-dependent and culture-independent approaches. Microb Biotechnol 11:1170–1183. https://doi.org/10.1111/1751-7915.13308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Riva V, Mapelli F, Bagnasco A et al (2022) A meta-analysis approach to defining the culturable core of plant endophytic bacterial communities. Appl Environ Microbiol 88:e02537–e02521. https://doi.org/10.1128/aem.02537-21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Joice R, Yasuda K, Shafquat A et al (2014) Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20:731–741. https://doi.org/10.1016/j.cmet.2014.10.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Sharon G, Garg N, Debelius J et al (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730. https://doi.org/10.1016/j.cmet.2014.10.016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. https://doi.org/10.1021/np200906s

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Lemon KP, Armitage GC, Relman DA et al (2012) Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 4:137rv5. https://doi.org/10.1126/scitranslmed.3004183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Lopez CA, Kingsbury DD, Velazquez EM et al (2014) Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe 16:156–163. https://doi.org/10.1016/j.chom.2014.07.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol 21:1211–1223. https://doi.org/10.1016/j.chembiol.2014.08.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Koppel N, Balskus EP (2016) Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol 23:18–30. https://doi.org/10.1016/j.chembiol.2015.12.008

    Article  PubMed  CAS  Google Scholar 

  59. Donia MS, Cimermancic P, Schulze CJ et al (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–1414. https://doi.org/10.1016/j.cell.2014.08.032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160. https://doi.org/10.1016/j.cell.2014.08.032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349:1254766. https://doi.org/10.1126/science.1254766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Cohen LJ, Kang HS, Chu J et al (2015) Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc Natl Acad Sci USA 112:E4825–E4834. https://doi.org/10.1073/pnas.1508737112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Tsukimoto M, Nagaoka M, Shishido Y et al (2011) Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J Nat Prod 74:2329–2331. https://doi.org/10.1021/np200543z

    Article  PubMed  CAS  Google Scholar 

  64. Delmont TO, Eren AM, Maccario L et al (2015) Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 6:358. https://doi.org/10.3389/fmicb.2015.00358

    Article  PubMed  PubMed Central  Google Scholar 

  65. McGenity TJ (2018) 2038–When microbes rule the Earth. Environ Microbiol 20:4213–4220. https://doi.org/10.1111/1462-2920.14449

    Article  PubMed  Google Scholar 

  66. Westmann CA, Alves LF, Silva-Rocha R et al (2018) Mining novel constitutive promoter elements in soil metagenomic libraries in Escherichia coli. Front Microbiol 9:1344. https://doi.org/10.3389/fmicb.2018.01344

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li J, Neubauer P (2014) Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. New Biotechnol 31:1–7. https://doi.org/10.1016/j.nbt.2014.03.006

    Article  CAS  Google Scholar 

  68. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516. https://doi.org/10.1038/nrmicro1161

    Article  PubMed  CAS  Google Scholar 

  69. Wilson MR, Zha L, Balskus EP (2017) Natural product discovery from the human microbiome. J Biol Chem 292:8546–8552. https://doi.org/10.1074/jbc.R116.762906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Kalia VC, Gong G, Shanmugam R et al (2022) The emerging biotherapeutic agent. Akkermansia Indian J Microbiol 62:1–10. https://doi.org/10.1007/s12088-021-00993-9

    Article  PubMed  Google Scholar 

  71. Kalia VC, Shim WY, Patel SKS et al (2022) Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. Sci Total Environ 834:155300. https://doi.org/10.1016/j.scitotenv.2022.155300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2021H1D3A2A0109705, NRF-2021R1I1A1A01060963, NRF-2020R1I1A1A01073483). This paper was supported by Konkuk University Researcher Fund in 2021. The sponsor(s) had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kul Lee.

Ethics declarations

Conflict of interest

All authors declare that there is no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within five years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalia, V.C., Gong, C., Shanmugam, R. et al. Prospecting Microbial Genomes for Biomolecules and Their Applications. Indian J Microbiol 62, 516–523 (2022). https://doi.org/10.1007/s12088-022-01040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01040-x

Keywords

Navigation