Skip to main content
Log in

Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Eighty-seven endophytic fungi were isolated from asymptomatic leaf tissues of Rhododendron tomentosum. Most of the isolates were non-sporulating and therefore difficult to identify exclusively based on morphological characters. Eighteen isolates that were morphologically distinct were selected for identification by sequencing the ITS region. For culture-independent analysis, the DNA was isolated from the surface-sterilized leaves of R. tomentosum and the ITS region was amplified using fungal specific primers ITS1F and ITS4, cloned, and 11 clones were randomly selected and sequenced. The phylogenetic analysis was performed with MEGA4 on a total of 49 sequences, including 18 endophytic isolates and 11 unculturables obtained in this study, and 20 sequences from Genbank, which were distributed in four clusters. The culturable and unculturable endophytes formed separate clades and were clearly distinguishable with no overlap within the groups. Endophytic fungi are a well-recognized source of bioactive compounds and therefore antibacterial and antioxidant activities of the isolates of R. tomentosum were studied. All isolates were grown in two different media, enriched (MEB) and depleted (DM), and screened for antibacterial and antioxidant activities. As a result, 10% produced antibacterials and 14% antioxidants, in total 24% of the isolates had biological activity. Antioxidant broth of TRT59 was partially purified using HPLC. The majority of antibacterial compounds were produced in DM media and antioxidants in MEB media. Therefore, it is advisable to test various media for production of antibacterials and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeln ECA, de Pagter MA, Verkley GJM (2000) Phylogeny of Pezicula, Dermea and Neofabraea inferred from partial sequences of the nuclear ribosomal RNA gene cluster. Mycologia 92:685–693

    Article  CAS  Google Scholar 

  • Aly AH, Edrada-Ebel RA, Wray V, Muller VEG, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Mej LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Bittleston LS, Brockmann F, Wcislo W, Van Bael SA (2010) Endophytic fungi reduce leaf-cutting ant damage to seedlings. Biol Lett 1–3

  • Dai CC, Yu BY, Zhao YT, Jiang JH, Yang QY (2006) The screening and identification of endophytic fungi from four species of family Euphorbiaceae and the strain sp. antibacterial activity. J Nanjing Forest Univ Nat Sci Ed 30(1):79–83

    Google Scholar 

  • Duke JA (1987) CRC handbook of medicinal plants. CRC, Boca Raton

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-applications to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • González V, Tello ML (2010) The endophytic mycota associated with Vitis vinifera in central Spain. doi:101007/s13225-010-0073-x

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1·5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycol Res 112:681–688

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Kesting JR, Staerk D, Tejesvi MV, Kini KR, Prakash HS, Jaroszewski JW (2009) HPLC–SPE–NMR identification of a novel metabolite containing the benzo[c]oxepin skeleton from the endophytic fungus Pestalotiopsis virgatula culture. Planta Med 75(10):1104–1106

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Nam B (2006) Extracts and essential oil of ledum palustre L leaves and their antioxidant and antimicrobial activities. J Food Sci Nutr 11:100–104

    Article  CAS  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Qazi PH, Sudan P, Khajuria RK, Sultan P, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Lee J, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) (1995) Subglutinols A & B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Lingqi Z, Bo G, Haiyan L, Songrong Z, Hua S, Su G, Rongcheng W (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chinese Traditional and Herbal Drugs 31:805–807

    Google Scholar 

  • Lönnrot E (1866) Flora Fennica - Suomen Kasvio

  • Neubert K, Mendgen K, Brinkmann H, Wirsel SG (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Pirttila AM, Kamarainen T, Hirsikorpi M, Jaakola L, Hohtola A (2001) DNA isolation methods for medicinal and aromatic plants. Plant Mol Biol Report 19:273a–273f

    Article  Google Scholar 

  • Pirttila AM, Pospiech H, Laukkanen H, Myllyla R, Hohtola A (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L). Microb Ecol 45:53–62

    Article  PubMed  CAS  Google Scholar 

  • Pitkaranta M, Meklin T, Hyvarinen A, Paulin L, Auvinen P, Nevalainen A, Rintala H (2007) Analysis of indoor dust fungal flora by rDNA sequence analysis, quantitative PCR and culture. Appl Environ Microbiol. doi:10.1128/AEM.00692-07

    PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Sultanova N, Makhmoor T, Abilov ZA, Parween Z, Omurkamzinova VB, ur-Rahman A, Choudry MI (2001) Antioxidant and antimicrobial activities of Tamarix ramosissima. J Ethnopharmacol 78:201–205

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Booth MG, McFarland JW, Herriott IC, Lennon NJ, Nusbaum C, Marr TG (2008) Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach. Mol Ecol Resour 8:742–752

    Article  CAS  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungal endophyte assemblagesfrom ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Tamhankar SA, Kini KR, Rao VS, Prakash HS (2009) Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers 38:167–183

    Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in Northern Finland. Fungal Divers 41:125–134

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Wang XP, Zhong J, Wang XH, Li MX, Zhang LQ (2006) Study on the bioactivity of the endophytic fungi isolated from Sinopodophyllum hexandrum and Diphylleia sinensis. Nat Prod Res Dev 18:15–19

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White JJ (eds) PCRProtocols: A guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P (2010) Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    Article  PubMed  CAS  Google Scholar 

  • Zeng SR, Xu QW, Ye BT, Ke Y, Fang BY, Huang XM (2005) Isolation of endophytic fungi from polygonum cuspidatum Sieb. et Zucc. and screening of isolates producing antibiotic active substances. J Fungal Res 3:24–26

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union (Projects PIAP-GA-2008-218191 and PIIF-GA-2008-220253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mysore V. Tejesvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejesvi, M.V., Kajula, M., Mattila, S. et al. Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Diversity 47, 97–107 (2011). https://doi.org/10.1007/s13225-010-0087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0087-4

Keywords

Navigation