Skip to main content
Log in

Nano-Biocatalysts: Potential Biotechnological Applications

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biocatalysts are a biomolecule of interest for various biotechnological applications. Non-reusability and poor stability of especially enzymes has always limited their applications in large-scale processing units. Nanotechnology paves a way by conjugating the biocatalysts on different matrices. It predominantly enables nanomaterials to overcome the limited efficacy of conventional biocatalysts. Nanomaterial conjugated nanobiocatalyst have enhanced catalytic properties, selectivity, and stability. Nanotechnology extended the flexibility to engineer biocatalysts for various innovative and predictive catalyses. So developed nanobiocatalyst harbors remarkable properties and has potential applications in diverse biotechnological sectors. This article summaries various developments made in the area of nanobiocatalyst towards their applications in biotechnological industries. Novel nanobiocatalyst engineering is an area of critical importance for harnessing the biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Panday D, Patel SKS, Singh R et al (2019) Solvent-tolerant acyltransferase from Bacillus sp. APB-6: purification and characterization. Indian J Microbiol 59:500–507. https://doi.org/10.1007/s12088-019-00836-8

    Article  CAS  Google Scholar 

  2. Muneeswaran G, Patel SKS, Kondaveeti S et al (2021) Biotin and Zn2+ increase xylitol production by Candida tropicalis. Indian J Microbiol 61:331–337. https://doi.org/10.1007/s12088-021-00960-4

    Article  PubMed  CAS  Google Scholar 

  3. Pagolu R, Singh R, Shanmugam R et al (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  PubMed  CAS  Google Scholar 

  4. Patel SKS, Das D, Kim SC et al (2021) Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew Sust Energ Rev 150:111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  5. Zheng Q, Wang M, Zhang L et al (2021) Topology engineering via protein catenane construction to strengthen an industrial biocatalyst. J Biotechnol 325:271–279. https://doi.org/10.1016/j.jbiotec.2020.10.012

    Article  PubMed  CAS  Google Scholar 

  6. Louhasakul Y, Cheirsilp B, Intasit R et al (2020) Enhanced valorization of industrial wastes for biodiesel feedstocks and biocatalyst by lipolytic oleaginous yeast and biosurfactant-producing bacteria. Int Biodeterior Biodegrad 148:104911. https://doi.org/10.1016/j.ibiod.2020.104911

    Article  CAS  Google Scholar 

  7. Madhavan A, Sindhu R, Binod P et al (2017) Strategies for design of improved biocatalysts for industrial applications. Bioresour Technol 245:1304–1313. https://doi.org/10.1016/j.biortech.2017.05.031

    Article  PubMed  CAS  Google Scholar 

  8. Prakash J, Sharma R, Patel SKS et al (2018) Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059. https://doi.org/10.1371/journal.pone.0199059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Samak NA, Jia Y, Sharshar MM et al (2020) Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environ Int 145:106144. https://doi.org/10.1016/j.envint.2020.106144

    Article  PubMed  CAS  Google Scholar 

  10. Ting W-W, Huang C-Y, Wu P-Y et al (2021) Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme Microb Technol 148:109811. https://doi.org/10.1016/j.enzmictec.2021.109811

    Article  PubMed  CAS  Google Scholar 

  11. Liao Y, Guo S, Hua X et al (2020) Autocatalytic replicated Mg2+ ligation DNAzyme as robust biocatalyst for sensitive, label-free and enzyme-free electrochemical biosensing of protein. Sens Actuators B Chem 310:127862. https://doi.org/10.1016/j.snb.2020.127862

    Article  CAS  Google Scholar 

  12. Zhang Y, Ni S, Chong C et al (2021) Biocatalysts at atom level: from coordination structure to medical applications. Appl Mater Today 23:101029. https://doi.org/10.1016/j.apmt.2021.101029

    Article  Google Scholar 

  13. Patel SKS, Choi SH, Kang YC et al (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk–shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/C6NR00346J

    Article  PubMed  CAS  Google Scholar 

  14. Patel SKS, Kumar V, Mardina P et al (2018) Methanol peoduction from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  PubMed  CAS  Google Scholar 

  15. Patel SKS, Gupta RK, Kondaveeti S et al (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  PubMed  CAS  Google Scholar 

  16. Wang K, Sun S, Ma B et al (2019) Construction and characterization of a nanostructured biocatalyst consisting of immobilized lipase on aminopropyl-functionalized montmorillonite. Appl Clay Sci 183:105329. https://doi.org/10.1016/j.clay.2019.105329

    Article  CAS  Google Scholar 

  17. Rodríguez-Núñez K, Bernal C, Martínez R (2021) Immobilized biocatalyst engineering: high throughput enzyme immobilization for the integration of biocatalyst improvement strategies. Int J Biol Macromol 170:61–70. https://doi.org/10.1016/j.ijbiomac.2020.12.097

    Article  PubMed  CAS  Google Scholar 

  18. Patel SKS, Otari SV, Kang YC et al (2017) Protein-inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/c6ra24404a

    Article  CAS  Google Scholar 

  19. Kalaivani GJ, Suja SK (2020) Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb Technol 140:109631. https://doi.org/10.1016/j.enzmictec.2020.109631

    Article  CAS  Google Scholar 

  20. Vasić K, Knez Ž, Leitgeb M (2020) Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Sci Rep 10:19478. https://doi.org/10.1038/s41598-020-76463-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Karagoz P, Mandair R, Manayil JC et al (2020) Purification and immobilization of engineered glucose dehydrogenase: a new approach to producing gluconic acid from breadwaste. Biotechnol Biofuels 13:100. https://doi.org/10.1186/s13068-020-01735-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen X, Yang C, Wang P et al (2017) Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase. Bioresour Bioprocess 4:2. https://doi.org/10.1186/s40643-016-0135-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patel SKS, Choi SH, Kang YC et al (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  PubMed  CAS  Google Scholar 

  24. Patel SKS, Choi H, Lee J-K (2019) Multi-metal based inorganic–protein hybrid system for enzyme immobilization. ACS Sustain Chem Eng 7:13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  25. Patel SKS, Otari SV, Li J et al (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  PubMed  CAS  Google Scholar 

  26. Patel SKS, Anwar MZ, Kumar A et al (2018) Fe2O3 yolk-shell particles-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  27. Patel SKS, Gupta RK, Kim S-Y et al (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  CAS  Google Scholar 

  28. Habimana P, Gao J, Mwizerwa JP et al (2021) Improvement of laccase activity via covalent immobilization over mesoporous silica coated magnetic multiwalled carbon nanotubes for the discoloration of synthetic dyes. ACS Omega 6:2777–2789. https://doi.org/10.1021/acsomega.0c05081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Otari SV, Patel SKS, Kalia VC et al (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresour Technol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  PubMed  CAS  Google Scholar 

  30. Moreira KS, de Oliveira ALB, Júnior LSM et al (2020) Lipase from Rhizomucor miehei immobilized on magnetic nanoparticles: performance in fatty acid ethyl ester (FAEE) optimized production by the Taguchi method. Front Bioeng Biotechnol 8:693. https://doi.org/10.3389/fbioe.2020.00693

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar V, Patel SKS, Gupta RK et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  32. Sojitra UV, Nadar SS, Rathod VK (2016) A magnetic tri-enzyme nanobiocatalyst for fruit juice clarification. Food Chem 213:296–305. https://doi.org/10.1016/j.foodchem.2016.06.074

    Article  PubMed  CAS  Google Scholar 

  33. Kalia VC, Singh Patel SK, Shanmugam R, Lee J-K (2021) Polyhydroxyalkanoates: trends and advances toward biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  PubMed  CAS  Google Scholar 

  34. Kim T-S, Patel SKS, Selvaraj C et al (2016) A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci Rep 6:33438. https://doi.org/10.1038/srep33438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Otari SV, Patel SKS, Jeong J-H et al (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv 6:86808–86816. https://doi.org/10.1039/C6RA14688K

    Article  CAS  Google Scholar 

  36. Otari SV, Kumar M, Anwar MZ et al (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7:10980. https://doi.org/10.1038/s41598-017-10777-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Patel SKS, Gupta RK, Das D et al (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  CAS  Google Scholar 

  38. Zdarta J, Meyer A, Jesionowski T et al (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92. https://doi.org/10.3390/catal8020092

    Article  CAS  Google Scholar 

  39. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macroporous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  PubMed  CAS  Google Scholar 

  40. Patel SKS, Kalia VC, Choi J-H et al (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. https://doi.org/10.4014/jmb.1401.01025

    Article  PubMed  CAS  Google Scholar 

  41. Kumar A, Park GD, Patel SKS et al (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  42. Otari SV, Shinde VV, Hui G et al (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle–decorated hybrid nanostructures as effective catalysts. Ceram 45:5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  43. Otari SV, Patel SKS, Kalia VC et al (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382. https://doi.org/10.1007/s12088-019-00812-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Anwar MZ, Kim DJ, Kumar A et al (2017) SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Sci Rep 7:15333. https://doi.org/10.1038/s41598-017-15550-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Patel SKS, Shanmugam R, Kalia VC et al (2020) Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour Technol 304:123022. https://doi.org/10.1016/j.biortech.2020.123022

    Article  PubMed  CAS  Google Scholar 

  46. Patel SKS, Otari SV, Chan Kang Y et al (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in l-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/C6RA24404A

    Article  CAS  Google Scholar 

  47. Kumar A, Kim I-W, Patel SKS et al (2018) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104. https://doi.org/10.1007/s12088-017-0700-2

    Article  PubMed  CAS  Google Scholar 

  48. Patel SKS, Gupta RK, Kumar V et al (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374. https://doi.org/10.1007/s12088-019-00796-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Patel SKS, Lee J-K, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  PubMed  CAS  Google Scholar 

  50. Patel SKS, Selvaraj C, Mardina P et al (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. https://doi.org/10.1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  51. Wlizło K, Polak J, Kapral-Piotrowska J et al (2020) Influence of carrier structure and physicochemical factors on immobilisation of fungal laccase in terms of bisphenol a removal. Catalysts 10:951. https://doi.org/10.3390/catal10090951

    Article  CAS  Google Scholar 

  52. Mishra B, Varjani S, Agrawal DC et al (2020) Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innov 20:101063. https://doi.org/10.1016/j.eti.2020.101063

    Article  CAS  Google Scholar 

  53. Pandey AK, Gaur VK, Udayan A et al (2021) Biocatalytic remediation of industrial pollutants for environmental sustainability: research needs and opportunities. Chemosphere 272:129936. https://doi.org/10.1016/j.chemosphere.2021.129936

    Article  CAS  PubMed  Google Scholar 

  54. Winkler CK, Schrittwieser JH, Kroutil W (2021) Power of biocatalysis for organic synthesis. ACS Cent Sci 7:55–71. https://doi.org/10.1021/acscentsci.0c01496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kumar A, Gudiukaite R, Gricajeva A et al (2020) Microbial lipolytic enzymes—promising energy-efficient biocatalysts in bioremediation. Energy 192:116674. https://doi.org/10.1016/j.energy.2019.116674

    Article  CAS  Google Scholar 

  56. Kondaveeti S, Patel SKS, Pagolu R et al (2019) Conversion of simulated biogas to electricity: sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy 189:116309. https://doi.org/10.1016/j.energy.2019.116309

    Article  CAS  Google Scholar 

  57. Lee J-K, Patel SKS, Sung BH et al (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346. https://doi.org/10.1016/j.biortech.2019.122346

    Article  PubMed  CAS  Google Scholar 

  58. Patel SKS, Kumar P, Singh M et al (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    Article  PubMed  CAS  Google Scholar 

  59. Sun H, Zhang H, Ang EL, Zhao H (2018) Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg Med Chem 26:1275–1284. https://doi.org/10.1016/j.bmc.2017.06.043

    Article  PubMed  CAS  Google Scholar 

  60. Truppo MD (2017) Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med Chem Lett 8:476–480. https://doi.org/10.1021/acsmedchemlett.7b00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Alcántara AR (2019) Biocatalysis and pharmaceuticals: a smart tool for sustainable development. Catalysts 9:792. https://doi.org/10.3390/catal9100792

    Article  CAS  Google Scholar 

  62. Bilal M, Iqbal HMN (2020) State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector- current status and future trends. Crit Rev Food Sci Nutr 60:2052–2066. https://doi.org/10.1080/10408398.2019.1627284

    Article  PubMed  Google Scholar 

  63. Akoh CC, Chang S-W, Lee G-C et al (2008) Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce. J Agric Food Chem 56:10445–10451. https://doi.org/10.1021/jf801928e

    Article  PubMed  CAS  Google Scholar 

  64. Kucharska K, Rybarczyk P, Hołowacz I et al (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937. https://doi.org/10.3390/molecules23112937

    Article  PubMed Central  CAS  Google Scholar 

  65. Patel SKS, Singh M, Kumar P et al (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. https://doi.org/10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  66. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

  67. Patel SKS, Ray S, Prakash J et al (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kumar P, Sharma R, Ray S et al (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. https://doi.org/10.1016/j.biortech.2015.01.138

    Article  PubMed  CAS  Google Scholar 

  69. Patel SKS, Kumar P, Mehariya S et al (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39:14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  70. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrog Energy 35:10674–10681. https://doi.org/10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  71. Patel SKS, Lee J-K, Kalia VC (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530. https://doi.org/10.1007/s12088-018-0759-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Patel SKS, Kalia VC, Joo JB et al (2020) Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresour Technol 297:122433. https://doi.org/10.1016/j.biortech.2019.122433

    Article  PubMed  CAS  Google Scholar 

  73. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Patel SKS, Kondaveeti S, Otari SV et al (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  75. Patel SKS, Singh RK, Kumar A et al (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927. https://doi.org/10.1016/j.biortech.2017.05.160

    Article  PubMed  CAS  Google Scholar 

  76. Patel SKS, Gupta RK, Kalia VC et al (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  PubMed  CAS  Google Scholar 

  77. Patel SKS, Jeong J-H, Mehariya S et al (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105. https://doi.org/10.4014/jmb.1608.08053

    Article  PubMed  CAS  Google Scholar 

  78. Patel SKS, Mardina P, Kim D et al (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. https://doi.org/10.1016/j.biortech.2016.06.065

    Article  PubMed  CAS  Google Scholar 

  79. Nguyen HH, Lee SH, Lee UJ et al (2019) Immobilized enzymes in biosensor applications. Materials 12:121. https://doi.org/10.3390/ma12010121

    Article  PubMed Central  CAS  Google Scholar 

  80. Fan L, Wang Y, Tuyishime P et al (2018) Cover feature: engineering artificial fusion proteins for enhanced methanol bioconversion. ChemBioChem 19:2422–2422. https://doi.org/10.1002/cbic.201800690

    Article  CAS  Google Scholar 

  81. Patterson JA, He H, Folz JS et al (2020) Thioproline formation as a driver of formaldehyde toxicity in Escherichia coli. Biochem J 477:1745–1757. https://doi.org/10.1042/BCJ20200198

    Article  PubMed  CAS  Google Scholar 

  82. Schlager S, Fuchsbauer A, Haberbauer M et al (2017) Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes. J Mater Chem A 5:2429–2443. https://doi.org/10.1039/C6TA07571A

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by a grant from Principal Scientific Advisor (Grant No. SA/Delhi Hub/2018 (C)), Government of India for the project entitled “Delhi Research Implementation and Innovation (DRIIV)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nar Singh Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Chauhan, N.S. Nano-Biocatalysts: Potential Biotechnological Applications. Indian J Microbiol 61, 441–448 (2021). https://doi.org/10.1007/s12088-021-00975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00975-x

Keywords

Navigation