Skip to main content
Log in

Lipid Production by Rhodotorula glutinis in Continuous Cultivation with a Gravity Sedimentation System

  • Short communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lipid accumulation is generally believed to be a partially growth-coupled biochemical process that results in differences in lipid content between different cells. To separate lipid-rich cells and increase the cellular biomass in bioreactors during the cultivation of the oleaginous yeasts, a gravity sedimentation system (GSS) is coupled to a bioreactor. The dilution rate (D) and the ratio of the outflow rate from the outlet of the GSS to the inflow rate into the bioreactor (B) were evaluated. The biomass in the bioreactor with GSS increased by 16.3% and 30.6% at D values of 0.05 h−1 (B = 0.25) and 0.02 h−1 (B = 0.5), respectively. Interestingly, cells containing 39.3% lipids were obtained from the outlet of the GSS (D = 0.02 h−1, B = 0.5), and the lipid content increased by 7.8% compared to that of the bioreactor. The results indicated that use of a GSS is a very effective method for increasing the cell concentration and separation of lipid-rich cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Karatay SE, Dönmez G (2010) Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol 101:7988–7990. https://doi.org/10.1016/j.biortech.2010.05.054

    Article  PubMed  CAS  Google Scholar 

  2. Liang M-H, Jiang J-G (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002

    Article  PubMed  CAS  Google Scholar 

  3. Kumar R, Biswas K, Singh PK, Singh PK, Elumalai S, Shukla P, Pabbi S (2017) Lipid production and molecular dynamics simulation for regulation of acc D gene in cyanobacteria under different N and P regimes. Biotechnol Biofuels 10:94. https://doi.org/10.1186/s13068-017-0776-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51. https://doi.org/10.1016/S0065-2164(02)51000-5

    Article  PubMed  CAS  Google Scholar 

  5. Huang X, Wang Y, Liu W, Bao J (2011) Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour Technol 102:9705–9709. https://doi.org/10.1016/j.biortech.2011.08.024

    Article  PubMed  CAS  Google Scholar 

  6. Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99:5923–5927. https://doi.org/10.1016/j.biortech.2007.04.046

    Article  PubMed  CAS  Google Scholar 

  7. Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in wheypermeate. Appl Microbiol Biotechnol 29:211–218. https://doi.org/10.1007/BF00939309

    Article  CAS  Google Scholar 

  8. Banerjee A, Kumar N, Varjani SJ, Guria C, Bandopadhyay R, Shukla P, Banerjee C (2018) Biosynthetic technology and environmental challenges. In: Varjani SJ, Parameswaran B, Kumar S, Khare SK (eds) Computational modelling and prediction of microalgae growth focused towards improved lipid production. Springer, Singapore, pp 223–232. https://doi.org/10.1007/978-981-10-7434-9_13

    Chapter  Google Scholar 

  9. Uprety BK, Dalli SS, Rakshit SK (2017) Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energ Convers Manage 135:117–128. https://doi.org/10.1016/j.enconman.2016.12.071

    Article  CAS  Google Scholar 

  10. Chang HN, Jung K, Choi JD, Lee JC, Woo H-C (2014) Multi-stage continuous high cell density culture systems: a review. Biotechnol Adv 32:514–525. https://doi.org/10.1016/j.biotechadv.2014.01.004

    Article  PubMed  CAS  Google Scholar 

  11. Kot AM, Blazejak S, Kurcz A, Gientka I, Kieliszek M (2016) Rhodotorula glutinis potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 100:6103–6117. https://doi.org/10.1007/s00253-016-7611-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fei Q, O’Brien M, Nelson R, Chen X, Lowell A, Dowe N (2016) Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels 9:130. https://doi.org/10.1186/s13068-016-0542-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Freitas C, Parreira TM, Roseiro J, Teresa AR, Silva L (2014) Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry. Bioresour Technol 158:355–359. https://doi.org/10.1016/j.biortech.2014.02.071

    Article  PubMed  CAS  Google Scholar 

  14. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218. https://doi.org/10.1016/j.procbio.2010.08.009

    Article  CAS  Google Scholar 

  15. Wiebe MG, Koivuranta K, Penttila M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12:26. https://doi.org/10.1186/1472-6750-12-26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Floetenmeyer MD, Glatz BA, Hammond EG (1985) Continuous culture fermentation of whey permeate to produce microbial oil. J Dairy Sci 68:633–637. https://doi.org/10.3168/jds.S0022-0302(85)80869-9

    Article  CAS  Google Scholar 

  17. Fábio G, Ana C, Emília LC, Sara R (2019) A new combined approach to improved lipid production using a strictly aerobic and oleaginous yeast. Eng Life Sci 19:47–56. https://doi.org/10.1002/elsc.201800115

    Article  CAS  Google Scholar 

  18. Guo M, Cheng S, Chen G, Chen J (2019) Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci 19:548–556. https://doi.org/10.1002/elsc.201800203

    Article  CAS  Google Scholar 

  19. Huang X, Shen Y, Luo H, Liu J, Liu J (2018) Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresour Technol 247:395–401. https://doi.org/10.1016/j.biortech.2017.09.096

    Article  PubMed  CAS  Google Scholar 

  20. Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:185. https://doi.org/10.1186/s13068-018-1181-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang Q, Li Y, Xia L (2014) An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol Biofuels 7:152. https://doi.org/10.1186/s13068-014-0152-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee CW, Chang HN (1987) Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol Bioeng 29:1105–1112. https://doi.org/10.1002/bit.260290910

    Article  PubMed  CAS  Google Scholar 

  23. Shen H, Zhang X, Gong Z, Wang Y, Yu X, Yang X, Zhao ZK (2017) Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 101:3801–3809. https://doi.org/10.1007/s00253-017-8157-0

    Article  PubMed  CAS  Google Scholar 

  24. Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001. https://doi.org/10.1007/s10811-011-9723-y

    Article  CAS  Google Scholar 

  25. Li ZF, Zhang L, Shen XJ, Lai BS, Sun S (2001) A comparative study on four methods of fungi lipid extraction. Microbiology 28:72–75

    CAS  Google Scholar 

  26. Gill CO, Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microb 33:231–239

    Article  CAS  Google Scholar 

  27. Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZK (2013) Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168:85–89. https://doi.org/10.1016/j.jbiotec.2013.08.010

    Article  PubMed  CAS  Google Scholar 

  28. Páca J, Grégr V (1979) Growth characteristics of Candida utilis in a multistage culture system. Enzyme Microb Technol 1:100–106. https://doi.org/10.1016/0141-0229(79)90106-6

    Article  Google Scholar 

  29. Klaus D, Simske S, Todd P, Stodieck L (1997) Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143:449–455. https://doi.org/10.1099/00221287-143-2-449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported the State Key Laboratory of Motor Vehicle Biofuel Technology (KFKT2014009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Shen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Statement

This research work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Li, Q. & Yu, X. Lipid Production by Rhodotorula glutinis in Continuous Cultivation with a Gravity Sedimentation System. Indian J Microbiol 60, 246–250 (2020). https://doi.org/10.1007/s12088-019-00849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00849-3

Keywords

Navigation